Preparation and Characterization of Nanoporous Sodium Carboxymethyl Cellulose Hydrogel Beads

Author:

Akalin Gulen Oytun1ORCID,Pulat Mehlika2

Affiliation:

1. Scientific and Technological Application and Research Center, Aksaray University, 68000 Aksaray, Turkey

2. Chemistry Department, Gazi University, Beşevler, 06500 Ankara, Turkey

Abstract

A series of nanoporous sodium carboxymethyl cellulose (NaCMC) hydrogel beads were prepared using FeCl3 ionic crosslinker by changing polymer and crosslinker percentages (%). Characteristics of the hydrogels were investigated by gel content, swelling test, degradation test, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR), Scanning Electron Microscope/Energy Dispersive X-ray Analysis (SEM/EDX), and Atomic Force Microscopy (AFM). Swelling experiments were studied by changing time, temperature, and pH. The swelling percentage (S%) regularly decreased with increasing the amounts of polymer and crosslinker, in contrast with gel content results. NaCMC hydrogels were found to be sensitive to pH variations. The degradation test showed that hydrogels had good stability and their degradation period varied from 30 to 36 days. According to SEM analysis, NaCMC hydrogels had mostly nanoporous structure. The average granule and pore sizes of the least swollen NaCMC-12 hydrogel were found to be 13.1±0.3 nm and 82.1±3.2 nm. The elemental compositions of hydrogels were determined with EDX. The minimum average surface roughness (Ra) and root mean square roughness (Rms) parameters were found to be 15.7±1.9 nm and 20.3±2.2 nm for NaCMC-12 hydrogels by AFM. Due to their good morphologies, stabilities, and swelling behaviors, NaCMC hydrogels can be suitable for biomaterial applications.

Funder

Scientific Research Projects Coordination Unit of Gazi University

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3