A Novel Design and Analysis Adaptive Hybrid ANFIS MPPT Controller for PEMFC-Fed EV Systems

Author:

Touti Ezzeddine12ORCID,Aoudia Mouloud3ORCID,Hussaian Basha C. H.4ORCID,Alrougy Ibrahim Mohammed5ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia

2. Department of Electrical Engineering, Higher Institute of Applied Sciences and Technology of Kasserine, University of Kairouan, Kairouan 3100, Tunisia

3. Department of Industrial Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia

4. Electric Vehicle R&D Lab, Nitte Meenakshi Institute of Technology, Bangalore, India

5. King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia

Abstract

Now, the present electric vehicle industry is focusing on the fuel cell technology because its features are high flexibility, continuous power supply, less atmospheric pollution, fast startup, and rapid response. However, the fuel cell gives nonlinear power versus current characteristics. Due to this nonlinear behavior, the maximum power extraction from the fuel stack is quite difficult. So, in this work, an adaptive genetic algorithm with an adaptive neuro-fuzzy inference system (ACS with ANFIS) MPPT controller is introduced for finding the MPP of the fuel stack system thereby extracting the peak power from the fuel stack. The proposed hybrid maximum power point tracking (MPPT) controller is compared with the other MPPT controllers which are enhanced incremental conductance-fuzzy logic controller (EIC with FLC), improved hill climb with fuzzy logic controller (IHC with FLC), adaptive beta with FLC, enhanced differential evolutionary with FLC (EDE with FLC), and marine predators optimization with FLC (MPO with FLC). Here, these hybrid controllers’ comprehensive investigations have been carried out in terms of tracking speed of the MPP, oscillations across the MPP, settling time of the converter voltage, maximum power extraction from the fuel stack, and working efficiency of the MPPT controller. The fuel stack generates a very low output voltage which is improved by using the boost DC-DC converter, and the overall fuel stack-fed boost converter system is designed by utilizing the MATLAB/Simulink tool. From the simulation results, the AGA with ANFIS MPPT controller gives high MPP tracking efficiency when compared to the other hybrid controller.

Funder

Northern Border University

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3