Green Synthesis of Cobalt Ferrite Nanoparticles: An Emerging Material for Environmental and Biomedical Applications

Author:

Tamboli Qudsiya Y.1ORCID,Patange Sunil M.2ORCID,Mohanta Yugal Kishore3ORCID,Sharma Rohit4ORCID,Zakde Kranti R.1ORCID

Affiliation:

1. Department of Basic and Applied Sciences, MGM University, Aurangabad 431001, Maharashtra, India

2. Materials Science Research Laboratory, SKM, Gunjoti, Osmanabad 413613, Maharashtra, India

3. Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Baridua, Ri-Bhoi, Techno City 793101, Meghalaya, India

4. Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India

Abstract

Research and utilization of nanotechnology are growing exponentially in every aspect of life. The constant growth of applications for magnetic nanoparticles, specifically nanoferrites, attracted many researchers. Among them, nanocobalt ferrite is the most crucial and studied magnetic nanoparticle. Environmentally benign synthetic methods became necessary to minimize environmental and occupational hazards. Green synthesis approaches in science and technology are now widely applied in the synthesis of nanomaterials. Herein, we reviewed recent advances in synthesizing nanocobalt ferrites and their composites using various scientific search engines. Subsequently, various applications were discussed, such as environmental (treatment of water/wastewater, photocatalytic degradation of dyes, and nanosorbent for environmental remediation) and biomedical (nanobiosensors for cancer diagnosis at the primary stage, effective targeted drug delivery, magnetic resonance imaging, hyperthermia, and potential drug candidates against cancer and microbial infections). This review offers comprehensive knowledge on how to choose appropriate natural resources for the green synthesis of nanocobalt ferrite and the benefits of this approach compared to conventional methods.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3