Protective Effect of Ethyl Pyruvate against Myocardial Ischemia Reperfusion Injury through Regulations of ROS-Related NLRP3 Inflammasome Activation

Author:

Jun Ji Hae1ORCID,Shim Jae-Kwang123,Oh Ju Eun1,Shin Eun-Jung1,Shin Eunah4,Kwak Young-Lan123ORCID

Affiliation:

1. Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

2. Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea

3. Yonsei Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea

4. Department of Pathology, CHA Gangnam Medical Center, CHA University, Seoul, Republic of Korea

Abstract

Emerging evidence indicates the pronounced role of inflammasome activation linked to reactive oxygen species (ROS) in the sterile inflammatory response triggered by ischemia/reperfusion (I/R) injury. Ethyl pyruvate (EP) is an antioxidant and conveys myocardial protection against I/R injury, while the exact mechanisms remain elusive. We aimed to investigate the effect of EP on myocardial I/R injury through mechanisms related to ROS and inflammasome regulation. The rats were randomly assigned to four groups: (1) sham, (2) I/R-control (IRC), (3) EP-pretreatment + I/R, and (4) I/R + EP-posttreatment. I/R was induced by a 30 min ligation of the left anterior descending artery followed by 4 h of reperfusion. EP (50 mg/kg) was administered intraperitoneally at 1 h before ischemia (pretreatment) or upon reperfusion (posttreatment). Both pre- and post-EP treatment resulted in significant reductions in myocardial infarct size (by 34% and 31%, respectively) and neutrophil infiltration. I/R-induced myocardial expressions of NADPH oxidase-4, carnitine palmitoyltransferase 1A, and thioredoxin-interacting protein (TXNIP) were mitigated by EP. EP treatment was associated with diminished inflammasome activation (NOD-like receptor 3 (NLRP3), apoptosis-associated speck-like protein, and caspase-1) and interleukin-1β induced by I/R. I/R-induced phosphorylation of ERK and p38 were also mitigated with EP treatments. In H9c2 cells, hypoxia-induced TXNIP and NLRP3 expressions were inhibited by EP and to a lesser degree by U0126 (MEK inhibitor) and SB203580 (p38 inhibitor) as well. EP’s downstream protective mechanisms in myocardial I/R injury would include mitigation of ROS-mediated NLRP3 inflammasome upregulation and its associated pathways, partly via inhibition of hypoxia-induced phosphorylation of ERK and p38.

Funder

Yonsei University College of Medicine

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3