Limonene through Attenuation of Neuroinflammation and Nitrite Level Exerts Antidepressant-Like Effect on Mouse Model of Maternal Separation Stress

Author:

Lorigooini Zahra1ORCID,Boroujeni Shakiba Nasiri1ORCID,Sayyadi-Shahraki Mohammad1,Rahimi-Madiseh Mohammad1ORCID,Bijad Elham1ORCID,Amini-khoei Hossein1ORCID

Affiliation:

1. Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran

Abstract

Background and Aim. Depression is a social problem with high economic burden in the society. Finding an effective agent with high efficacy and few side effects is therefore needed. Involvement of neuroimmune response as well as nitric oxide (NO) has been determined in the pathophysiology of depression. Limonene is a terpene with various pharmacological properties. Thus, we aimed to evaluate antidepressant-like effect of limonene on a mouse model of maternal separation (MS) focusing on neuroinflammation and NO level in the hippocampus. Methods. Mice were randomly divided into experimental groups as follows: the control group received normal saline and MS groups received normal saline, limonene (10 and 20 mg/kg), L-NAME (10 mg/kg), L-arginine (L-arg) (75 mg/kg), limonene (10 mg/kg) plus L-NAME, and limonene (20 mg/kg) plus L-arg. Behavioral tests including the forced swimming test (FST), open field test (OFT), and splash test were performed. Finally, serum and hippocampal nitrite levels as well as the expression of inflammatory genes (IL-1β and TNF-α) in the hippocampus were measured. Results. We showed that MS caused depressive-like behavior. Treatment of MS mice with limonene reduced the duration of immobility time in FST and increases the grooming activity time in the splash test. Limonene also reduces serum and brain nitrite levels and reduces the expression of IL-1β and TNF-α in the hippocampus. We found that L-NAME potentiated the effects of a subeffective dose of limonene. Conclusion. We concluded that the antidepressant-like effects of limonene are probably mediated through inhibition of neuroinflammation and attenuation of nitrite levels in the hippocampus.

Funder

Shahrekord University of Medical Sciences

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology,General Medicine,Neuropsychology and Physiological Psychology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3