Combined Transfection of the Three Transcriptional Factors, PDX-1, NeuroD1, and MafA, Causes Differentiation of Bone Marrow Mesenchymal Stem Cells into Insulin-Producing Cells

Author:

Qing-Song Guo1,Ming-Yan Zhu1,Lei Wang2,Xiang-Jun Fan1,Yu-Hua Lu2,Zhi-Wei Wang1,Sha-Jun Zhu1,Yao Wang1,Yan Huang2

Affiliation:

1. Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China

2. Department of Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong 226001, China

Abstract

Aims. The goal of cell transcription for treatment of diabetes is to generate surrogateβ-cells from an appropriate cell line. However, the induced replacement cells have showed less physiological function in producing insulin compared with normalβ-cells.Methods. Here, we report a procedure for induction of insulin-producing cells (IPCs) from bone marrow murine mesenchymal stem cells (BM-mMSCs). These BM-mMSCs have the potential to differentiate into insulin-producing cells when a combination of PDX-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation-1), and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A) genes are transfected into them and expressed in these cells.Results. Insulin biosynthesis and secretion were induced in mMSCs into which these three genes have been transfected and expressed. The amount of induced insulin in the mMSCs which have been transfected with the three genes together is significantly higher than in those mMSCs that were only transfected with one or two of these three genes. Transplantation of the transfected cells into mice with streptozotocin-induced diabetes results in insulin expression and the reversal of the glucose challenge.Conclusions. These findings suggest major implications for cell replacement strategies in generation of surrogateβ-cells for the treatment of diabetes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3