Donor Mesenchymal Stem Cells Program Bone Marrow, Altering Macrophages, and Suppressing Endometriosis in Mice

Author:

Habata Shutaro1,Mamillapalli Ramanaiah1ORCID,Ucar Abdullah1,Taylor Hugh S.1

Affiliation:

1. Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA

Abstract

Endometriosis is a chronic inflammatory gynecological disorder regulated by estrogen and characterized by the growth of endometrial tissue outside the uterus. We have previously demonstrated that mesenchymal stem cells (MSCs) contribute directly to endometriosis. Here, we investigated an indirect effect; we hypothesized that MSCs may also impact the bone marrow (BM) by regulating bone marrow-derived inflammatory cells. Endometriosis was induced in mice by transplanting uterine tissue into recipient mice followed by BM transplant. Control or MSC conditioned BM was injected retro-orbitally. Direct administration of MSCs outside of the setting of BM conditioning did not alter endometriosis. Coculture of an undifferentiated macrophage cell line with MSCs in vitro led to a reduction of M1 and increased M2 macrophages as determined by fluorescence-activated cell sorting and western blot. Conditioning of BM with MSCs and transplantation into a mouse model inhibited endometriotic lesion development and reduced lesion volume by sevenfold compared to BM transplant without MSCs conditioning. Immunohistochemistry and immunofluorescence showed that MSC conditioned BM reduced the infiltration of macrophages and neutrophils into endometriotic lesions by twofold and decreased the proportion of M1 compared to M2 macrophages, reducing inflammation and likely promoting tissue repair. Expression of several inflammatory markers measured by quantitative real-time polymerase chain reaction, including tumor necrosis factor alpha and CXCR4, was decreased in the conditioned BM. Donor MSCs were not detected in recipient BM or endometriotic lesions, suggesting that MSCs actively program the transplanted BM. Taken together, these data show that individual characteristics of BM have an unexpected role in the development of endometriosis. BM remodeling and alterations in the inflammatory response are also potential treatments for endometriosis. Identification of the molecular basis for BM programing by MSCs will lead to a better understanding of the immune system contribution to this disease and may lead to new therapeutic targets for endometriosis.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Reference50 articles.

1. Endometriosis is a chronic systemic disease: clinical challenges and novel innovations

2. Endometriosis

3. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation;J. A. Sampson;The American Journal of Pathology,1927

4. The Pathogenesis of Endometriosis: Molecular and Cell Biology Insights

5. Mesenchymal Stem Cells for Regenerative Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3