Stage-Dependent Regulation of Dental Pulp Stem Cell Odontogenic Differentiation by Transforming Growth Factor-β1

Author:

Bai Yu1ORCID,Liu Xin1ORCID,Li Junqing12ORCID,Wang Zhihua1ORCID,Guo Qian1ORCID,Xiao Min1ORCID,Cooper Paul R.3ORCID,Yu Qing1ORCID,He Wenxi4ORCID

Affiliation:

1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Air Force Medical University, 145 Changle Road, Xi’an 710032, China

2. Hospital of Stomatology, Zunyi Medical University, 89 Wu-jiang Dong Road, Zunyi 563003, China

3. Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand

4. Department of Stomatology, Air Force Medical Center, Air Force Medical University, 30 Fucheng Road, Beijing 100142, China

Abstract

Transforming growth factor-β1 (TGF-β1) is an important multifunctional cytokine with dual effects on stem cell differentiation. However, the role of TGF-β1 on odontogenic differentiation of dental pulp stem cells (DPSCs) remains to be entirely elucidated. In the present study, we initially investigated the effect of TGF-β1 at a range of concentrations (0.1-5 ng/mL) on the proliferation, cell cycle, and apoptosis of DPSCs. Subsequently, to determine the effect of TGF-β1 on odontogenic differentiation, alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining assays at different concentrations and time points were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis were used to determine the levels of odonto-/osteo-genic differentiation-related gene and protein expression, respectively. For in vivo studies, newly formed tissue was assessed by Masson’s trichrome and von Kossa staining. Data indicated that TGF-β1 inhibited DPSCs proliferation in a concentration-and time-dependent manner ( p < 0.05 ) and induced cell cycle arrest but did not affect apoptosis. ALP activity was enhanced, while ARS reduced gradually with increasing TGF-β1 concentrations, accompanied by increased expression of early marker genes of odonto-/osteo-genic differentiation and decreased expression of late-stage mineralization marker genes ( p < 0.05 ). ALP expression was elevated in the TGF-β1-treatment group until 14 days, and the intensity of ARS staining was attenuated at days 14 and 21 ( p < 0.05 ). Compared with the control group, abundant collagen but no mineralized tissues were observed in the TGF-β1-treatment group in vivo. Overall, these findings indicate that TGF-β1 promotes odontogenic differentiation of DPSCs at early-stage while inhibiting later-stage mineralization processes.

Funder

Shaanxi Natural Science Basic Research Program-Key Project

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3