PRDM16 Represses the Pig White Lipogenesis through Promoting Lipolysis Activity

Author:

Gu Ting1ORCID,Xu Guli1ORCID,Jiang Chengfeng1ORCID,Hou Lianjie1ORCID,Wu Zhenfang12ORCID,Wang Chong1ORCID

Affiliation:

1. National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China

2. Wens Foodstuff Group Co., Ltd., Yunfu, China

Abstract

The positive regulatory domain containing 16 (PRDM16) gene is a dominant transcriptional regulator that favors the “browning” of white adipocytes in rodents. Since the “browning” of white fat is important in pig in terms of producing heat fighting against cold environment, avoiding obesity, and improving meat quality, understanding the critical role that PRDM16 gene played in pig adipose “browning” and energy metabolism is of great significance. However, the constitution of pig fat differs a lot from rodents and human as they do not have brown adipose tissue (BAT) even in the newborn piglets. In this study, we isolated porcine primary preadipocytes and investigated the function of PRDM16 during preadipocytes differentiation. Our results showed that overexpression of the PR domain of PRDM16 repressed the differentiation of porcine preadipocytes, indicated by oil red O staining and the deposition of the triglyceride. Overexpression of the PR domain significantly increased the level of lipolysis and mitochondrial oxidative capacity detected by Western blotting during differentiation. Furthermore, we purified the protein coded by the PR domain and demonstrated that this protein has the H3K9me1 methyltransferase activity. In conclusion, the PR domain of the porcine PRDM16 gene repressed the mature of the porcine preadipocytes by promoting its oxidative activity.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3