The Effect of Wetfix and Nanohydrated Lime Additives on Bitumen Aging and the Cohesion and Adhesion Failure Mechanisms of Hot Asphalt Mixtures

Author:

Arabani Mahyar1ORCID,Ghasemdoost Abadi Kaveh1ORCID,Hamedi Gholam Hossein1ORCID

Affiliation:

1. Department of Civil Engineering, University of Guilan, Rasht, Iran

Abstract

Aging due to sunlight and the passage of time is an effective element in the occurrence of moisture damage in hot asphalt mixtures. Still, the effects of this parameter are scarcely considered in the experiments examining the moisture damage potential. Accordingly, this study investigated the effect of aging on the performance of hot asphalt mixtures and examined the improvement of moisture damage performance by using antistripping additives via mechanism and functional tests. Two types of aggregates (limestone and granite) with different degrees of moisture sensitivity, two types of bitumen (PG64-16 and PG58-22) with different performances, and two additives (Wetfix liquid additive and nanohydrated lime) as bitumen modifiers were used. Bitumen samples and asphalt mixtures were subjected to short- and long-term aging. The pull-off test was performed to explore the aging effect on different failure mechanisms (cohesion and adhesion), and the indirect tensile stiffness modulus (ITSM) test was conducted to study the asphalt mixture’s performance against moisture damage. The results specify that aging, in terms of hot asphalt mixture hardening in dry and wet conditions, decreased the MSR (resilient modulus wet to resilient modulus dry ratio), and this decline was greater in long-term aging. The pull-off test results exhibited that aging, especially in the long term, decreased the asphalt mixture’s adhesive strength in dry and wet conditions; this decline in adhesion was greater in the wet than in the dry state, and this difference decreased the wet-to-dry adhesion strength ratio (the pull-off ratio). The additives relatively improved the yield modulus of the asphalt mixture, but their effect was greater in the wet state. A comparison of the pull-off test results in cohesion and adhesion failure demonstrated that Wetfix was more effective in improving bitumen–aggregate adhesion, whereas nanohydrated lime was more effective in enhancing bitumen adhesion. The resilient modulus (Mr) ratio in wet-to-dry conditions indicated that nanohydrated lime had better effects on the overall performance of the aged asphalt mixture against moisture damage. To investigate the effect of additives on the performance of asphalt mixtures, a t-test was performed in all modes of control, short-term aging, and long-term aging. The findings showed the effect of Wetfix and nanohydrated lime on increasing the modulus of elasticity of the samples.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3