Multiclass Cancer Prediction Based on Copy Number Variation Using Deep Learning

Author:

Attique Haleema1,Shah Sajid12ORCID,Jabeen Saima3,Khan Fiaz Gul1,Khan Ahmad1,ELAffendi Mohammed2ORCID

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Islamabad, Pakistan

2. EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia

3. Department of IT and Computer Science, Pak-Austria Facchochschule: Institute of Applied Sciences and Technology, Mang, Haripur, KPK, Pakistan

Abstract

DNA copy number variation (CNV) is the type of DNA variation which is associated with various human diseases. CNV ranges in size from 1 kilobase to several megabases on a chromosome. Most of the computational research for cancer classification is traditional machine learning based, which relies on handcrafted extraction and selection of features. To the best of our knowledge, the deep learning-based research also uses the step of feature extraction and selection. To understand the difference between multiple human cancers, we developed three end-to-end deep learning models, i.e., DNN (fully connected), CNN (convolution neural network), and RNN (recurrent neural network), to classify six cancer types using the CNV data of 24,174 genes. The strength of an end-to-end deep learning model lies in representation learning (automatic feature extraction). The purpose of proposing more than one model is to find which architecture among them performs better for CNV data. Our best model achieved 92% accuracy with an ROC of 0.99, and we compared the performances of our proposed models with state-of-the-art techniques. Our models have outperformed the state-of-the-art techniques in terms of accuracy, precision, and ROC. In the future, we aim to work on other types of cancers as well.

Funder

Prince Sultan University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review: Various Challenges and Causes based on Cervical Cancer;2022 5th International Conference on Contemporary Computing and Informatics (IC3I);2022-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3