SIRT6 Prevents Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats

Author:

Fang Lun1ORCID,Zhang Gang2ORCID,Wu Yadi12ORCID,Li Zhongzhe1ORCID,Gao Shan3ORCID,Zhou Lu12ORCID

Affiliation:

1. Institute of Sports Medicine, Shandong First Medical University & Shandong Academy Medical Sciences, Taian, 271016 Shandong Province, China

2. Department of Orthopedics, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000 Shandong Province, China

3. School of Pharmaceutical Science, Shandong First Medical University & Shandong Academy Medical Sciences, Taian, 271016 Shandong Province, China

Abstract

Objective. Glucocorticoid-induced osteonecrosis of the femoral head is one of the most common causes of nontraumatic osteonecrosis of the femoral head, but its exact pathogenesis remains unclear. The aim of this study was to investigate the role of SIRT6 in the maintenance of bone tissue morphology and structure, intravascular lipid metabolism, and its potential molecular mechanism in glucocorticoid-induced osteonecrosis of the femoral head. Methods. SIRT6 adenovirus was transfected into GIONFH in rats. The microstructure of rat bone was observed by micro-CT and histological staining, and the expression of bone formation-related proteins and angiogenesis-related factors was determined through western blot and immunohistochemistry. Alkaline phosphatase activity, alizarin red staining, and the expression levels of Runx2 and osteocalcin were used to evaluate the osteogenic potential. And in vitro tube formation assay and immunofluorescence were used to detect the ability of endothelial cell angiogenesis. Results. Dexamethasone significantly inhibited osteoblast differentiation, affected bone formation, and destroyed microvessel formation, increased the intracellular Fe2+ and ROS levels and induced the occurrence of ferroptosis. SIRT6 can inhibit ferroptosis and restore the ability of bone formation and angiogenesis. Conclusion. SIRT6 can inhibit the occurrence of ferroptosis, reduce the damage of vascular endothelium, and promote osteogenic differentiation, so as to prevent the occurrence of osteonecrosis of the femoral head.

Funder

Shandong First Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3