Developing a Diagnostic Model to Predict the Risk of Asthma Based on Ten Macrophage-Related Gene Signatures

Author:

Ai Xiaoshun1ORCID,Shen Hong2ORCID,Wang Yangyanqiu3ORCID,Zhuang Jing4ORCID,Zhou Yani3ORCID,Niu Furong2ORCID,Zhou Qing4ORCID

Affiliation:

1. Huzhou First Hospital, Zhebei Mingzhou Hospital, No. 225, Gongyuan Road, Wuxing District, Huzhou Zhejiang Province, 313000, China

2. School of Medicine, Huzhou University, No. 759 Erhuan East Road, Huzhou, Zhejiang Province, 313000, China

3. Huzhou Hospital of Zhejiang University, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang Province, 313000, China

4. Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No. 1558, Sanhuan North Road, Wuxing District, Huzhou Zhejiang Province, 313000, China

Abstract

Objective. Asthma (AS) is a chronic inflammatory disease of the airway, and macrophages contribute to AS remodeling. Our study aims at screening macrophage-related gene signatures to build a risk prediction model and explore its predictive abilities in AS diagnosis. Methods. Three microarray datasets were downloaded from the GEO database. The Limma package was used to screen differentially expressed genes (DEGs) between AS and controls. The ssGSEA algorithm was used to determine immune cell proportions. The Pearson correlation coefficient was computed to select the macrophage-related DEGs. The LASSO and RFE algorithms were implemented to filter the macrophage-related DEG signatures to establish a risk prediction model. Receiver operating characteristic (ROC) curves were used to assess the diagnostic ability of the prediction model. Finally, the qPCR was used to detect the expression of selected differential genes in sputum from healthy people and asthmatic patients. Results. We obtained 1,189 DEGs between AS and controls from the combined datasets. By evaluating immune cell proportions, macrophages showed a significant difference between the two groups, and 439 DEGs were found to be associated with macrophages. These genes were mainly enriched in the gene ontology-biological process of immune and inflammatory responses, as well as in the KEGG pathways of cytokine-cytokine receptor interaction and biosynthesis of antibiotics. Finally, 10 macrophage-related DEG signatures (EARS2, ATP2A2, COLGALT1, GART, WNT5A, AK5, ZBTB16, CCL17, ADORA3, and CXCR4) were screened as an optimized gene set to predict AS diagnosis, and they showed diagnostic abilities with AUCs of 0.968 and 0.875 in ROC curves of combined and validation datasets, respectively. The mRNA expressions of EARS2, ATP2A2, COLGALT1, and GART in the control group were higher than in AS group, while the expressions of WNT5A, AK5, ZBTB16, CCL17, ADORA3, and CXCR4 in the control group were lower than that in the AS group. Conclusion. We proposed a diagnostic model based on 10 macrophage-related genes to predict AS risk.\.

Funder

Zhejiang Provincial Department of Science and Technology Project

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3