Effect of Wenxin Granules on Gap Junction and MiR-1 in Rats with Myocardial Infarction

Author:

Wu Aiming1ORCID,Zhao Mingjing1ORCID,Lou Lixia1ORCID,Zhai Jianying2ORCID,Zhang Dongmei1ORCID,Zhu Haiyan3ORCID,Gao Yonghong1ORCID,Shang Hongcai1ORCID,Chai Limin1ORCID

Affiliation:

1. Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China

2. National Engineering Research Center for R&D of TCM Multi-Ingredient Drugs, Beijing 100079, China

3. Beijing University of Chinese Medicine Institute for Cardiovascular Disease, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China

Abstract

Myocardial infarction (MI) patients are at high risk of potential lethal arrhythmia. Gap junction and microRNA-1 (miR-1) are both arrhythmia generating conditions. The present study investigated whether Wenxin Granules (Wenxin-Keli, WXKL) could prevent potential lethal arrhythmia by improving gap junctions and miR-1 following MI. Male Sprague-Dawley rats were divided randomly into control, model, metoprolol, low dose WXKL, and high dose WXKL groups. The MI rat model was created by coronary artery ligation. Treatments were administrated intragastrically to the rats for 4 weeks. Conventional transmission electron microscopy was performed to observe the ultrastructure of gap junctions. Quantitative real-time PCR and western blotting were used to detect the expression of miR-1, protein kinase C (PKC), and related proteins. Additionally, a programmatic electrophysiological stimulation test was performed to detect the ventricular fibrillation threshold (VFT). WXKL protected the ultrastructure of the gap junctions and their constituent Cx43 by regulating miR-1 and PKC mediated signal transduction and increased the VFT significantly in the rat MI model. The results suggested that WXKL is an effective alternative medicine to prevent potentially lethal arrhythmia following MI.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3