Alternative Load Path Analysis for Determining the Geometric Agreement of a Cable-Stayed Bridge with Steel Truss Girders

Author:

Zheng Xiaobo1ORCID,Zhang Gang1ORCID,Zhang Yongfei1,Ren Leping2

Affiliation:

1. School of Highway, Chang’an University, Xi’an, Shaanxi Province 710064, China

2. China Construction Third Engineering Bureau Group Co., Ltd., Xi’an, Shaanxi Province 710065, China

Abstract

The geometric agreement, commonly hailed as load-transferring paths within bridge structures, is significantly crucial to the bridge structural mechanical performance, such as capacity, deformation, and collapse behavior. This paper presents a methodology dependent on alternative load paths to investigate the collapse behavior of a double-pylon cable-stayed bridge with steel truss girders subjected to excess vehicle loading. The cable-stayed bridge with steel truss girders is simplified using a series-parallel load-bearing system. This research manifests that the enforced vehicle loading can be transferred to alternative paths of cable-stayed bridges in different load-structure scenarios. A 3-D finite element model is established utilizing computer software ANSYS to explore the collapse path of cable-stayed bridge with steel truss girders, taking into account chord failure, loss of cables together with corrosion in steel truss girders. The results show that chord failures in the mid-portion of the mainspan result in brittle damage in truss girders or even sudden bridge collapse. Further,the loss of long cables leads to ductile damage with significant displacement.The corrosion in steel truss girders has a highly slight influence on the collapse behavior of cable-stayed bridge. The proposed methodology can be reliably used to assess and determine the vulnerability of cable-stayed bridge with steel truss girders during their service lifetime, thus preventing structural collapses in this type of bridge.

Funder

Shaanxi Communication Science and Technology Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Reference31 articles.

1. From Disaster to Prevention: The Silver Bridge

2. Bridge system safety and redundancy;M. Ghosn;No. Project,2014

3. Structural sensitivity as a measure of redundancy;P. C. Pandey;Journal of Structural Engineering,1998

4. System Safety Performance Metrics for Skeletal Structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3