Oxygen Vacancy-Rich NiCo2O4 on Carbon Framework with Controlled Pore Architectures as Efficient Bifunctional Electrocatalysts for Zn-Air Batteries

Author:

Kim Min1,Hong Jeong Hoo1,Kim Ki Beom1,Koo Hye Young2ORCID,Kang Yun Chan1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea

2. Department of Metal Powder, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, Republic of Korea

Abstract

Transition metal oxides are considered alternative electrocatalysts for ZAB owing to their multiple oxidation states. However, they have limitations such as low electrical conductivity and the deficiency of reactive sites. In this study, to overcome these shortcomings and improve electrocatalytic activity, oxygen vacancies and porous architectures were introduced through a partial reduction process and a porous carbon framework. Open porous carbon microspheres with uniformly loaded NiCo2O4 nanosheets and oxygen vacancies (V-NCO/OPC) displayed enhanced electrocatalytic performance with a low Tafel slope (68 mV dec-1) in the oxygen reduction reaction (ORR) and a low overpotential (402 mV) at 10 mA cm–2 in the oxygen evolution reaction (OER). The combined effect of the oxygen vacancies and porous architecture can offer sufficient active sites, modify the electronic structure of the metal oxide surface, and facilitate mass transport, enhancing the electrocatalytic properties of V-NCO/OPC. Furthermore, when applied for ZAB, V-NCO/OPC demonstrated better electrochemical performance including discharge power density (154.9 mW cm-2) at the current density of 175.9 mA cm-2, low voltage gap (0.85 V) at the initial cycle, and long-term (250 h) cycle stability at the current density of 10 mA cm−2 than those of noble-metal electrocatalysts.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3