Mechanism of Action of Yin Nourishing and Heat Clearing Prescription in Treating Cough Variant Asthma Based on Network Pharmacology and Molecular Docking Verification

Author:

Zhang Yin1,Cui Yixin1,Chen Qi1,Li Fagen1,Li Shaodan1ORCID

Affiliation:

1. Department of Traditional Chinese Medicine, The Sixth Medical Center, General Hospital of Chinese PLA, Beijing 100853, China

Abstract

Objective. To explore the mechanism of action of the yin nourishing and heat clearing prescription in treating cough variant asthma (CVA) based on network pharmacology (NP). Methods. The active ingredients and targets of the yin nourishing and heat clearing prescription were screened using the Traditional Chinese Medicine System Pharmacology Analysis Platform (TCMSP); CVA targets were screened by the GeneCards, NCBI gene, and OMIM databases to construct the component-target network and the protein-protein interaction (PPI) network. GO functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the target genes were performed to construct the component-disease-pathway-target biological network. Moreover, CVA-related core target structures with high values were subjected to molecular docking (MD) with the active components. Results. We found 265 eligible targets in the prescription and 1115 CVA-related genes. The medicine targets were intersected with disease targets, which yielded 148 common targets. After topology analysis, 66 key targets were screened. Upon GO functional annotation, 2408 biological processes, 153 molecular functions, and 162 KEGG pathways were enriched. Molecular docking results suggested that the major active ingredients of the prescription showed high affinity to the key targets, among which AKT1 might be the most important target. Conclusions. Active ingredients might act on AKT1, IL-6, VEGFA, IL-1B, and JUN to suppress eosinophil accumulation, decrease histamine release, suppress airway inflammation, regulate the airway immune microenvironment, increase autophagy in lung tissue, inhibit mucus production, and reduce airway resistance and hyperresponsiveness, thus treating CVA. Our findings provide a reference for further research and clinical applications of the prescription.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3