Hypoxia-Induced GST1 Exerts Protective Effects on Trophoblasts via Inhibiting Reactive Oxygen Species (ROS) Accumulation

Author:

Chen Lingjuan1,Chen Gaoli1,Guo Lixuan1,Wang Yaping2,Ai Chengjin1ORCID

Affiliation:

1. Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan Province, China

2. Ophthalmology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan, China

Abstract

Hypoxic conditions are a typical extrinsic factor for the modification of trophoblast biological functions, including cell proliferation, migration, and invasion. Hypoxia-induced reactive oxygen species (ROS) accumulation causes chronic trophoblast injury and contributes to preeclampsia (PE). Glutathione-S-transferase P (GSTP1) is a main regulator of ROS. However, it is still unknown whether GSTP1 is involved in ROS regulation under hypoxic conditions. Here, we investigated the expression level of GSTP1 in first-trimester villi placentas compared with full-term placentas and the effect of hypoxic conditions on GSTP1. GSTP1 expression in first-trimester villi placentas was much higher than that in full-term placentas. After hypoxia exposure, GSTP1 was significantly upregulated in JEG3 cells, a trophoblast-like cell line. Hypoxic-induced GSTP1 scavenged ROS accumulated by hypoxia exposure, potentially by promoting GST activity. The inhibitory effects of hypoxia exposure on cell proliferation, migration, and invasion induced by hypoxia exposure were obviously reversed by overexpression of GSTP1. Hypoxia-induced cell apoptosis was also reversed by GSTP1 overexpression, indicating the protective effects of GSTP1 against ROS-induced cell injury. Moreover, overexpressed GSTP1 markedly promoted the cell proliferation, migration, invasion, and colony formation abilities in JEG3 cells, demonstrating that GSP1 also exerts promoting effects under normoxic conditions. These data show that hypoxia-induced GSTP1 expression facilitates trophoblast cell proliferation, migration, and invasion and exerts protective effects under hypoxic conditions, which may play an important role during the increase in PE.

Publisher

Hindawi Limited

Subject

Cancer Research,Cell Biology,Molecular Medicine,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3