PRDM16, Negatively Regulated by miR-372-3p, Suppresses Cell Proliferation and Invasion in Prostate Cancer

Author:

Yin Guangwei1ORCID,Yan Chengquan1ORCID,Hao Jing2ORCID,Zhang Chunying1ORCID,Wang Pengfei1ORCID,Zhao Chaofei1ORCID,Cai Shengyong1ORCID,Meng Bin1ORCID,Zhang Aili1ORCID,Li Lin1ORCID

Affiliation:

1. The Third Department of Urology, Tangshan Gongren Hospital, Tangshan, Hebei Province, 063000, China

2. Office of Academic Affairs, North China University of Science and Technology, Tangshan, Hebei Province, 063210, China

Abstract

Prostate cancer (PCa) is one of the most prevalent malignant tumors. The alternation of microRNA (miRNA) expression is associated with prostate cancer progression, whereas its way to influence progression of prostate cancer remains elusive. The expression levels of PRDM16 mRNA and miR-372-3p in PCa cell lines were analyzed using qRT-PCR. The protein expression of PRDM16 in PCa cell lines was also analyzed using western blot. CCK-8, wound healing, and Transwell assays were applied to examine cell proliferation, migration, and invasion in prostate cancer cells, respectively. Dual-luciferase reporter assay was utilized to validate the interaction between miR-372-3p and PRDM16. In the present study, markedly decreased PRDM16 mRNA and protein expression levels were observed in prostate cancer cells. PRDM16 overexpression hampered cellular proliferation, migration, and invasion, while silencing PRDM16 had the opposite effect. Moreover, miR-372-3p could target the regulation expression of PRDM16. Rescue experiments demonstrated that upregulating miR-372-3p conspicuously restored the inhibitory effect of increased PRDM16 on cell proliferation, migration, and invasion in PCa. Overall, our study clarifies the biological role of miR-372-3p/PRDM16 axis in prostate cancer progression, which may be effective biomarkers for clinical treatment of prostate cancer.

Publisher

Hindawi Limited

Subject

Urology,Endocrinology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3