Sesamin Enhances Nrf2-Mediated Protective Defense against Oxidative Stress and Inflammation in Colitis via AKT and ERK Activation

Author:

Bai Xupeng12,Gou Xiaoli1,Cai Peiheng1,Xu Chuncao1,Cao Lin1,Zhao Zhongxiang3,Huang Min1,Jin Jing1ORCID

Affiliation:

1. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China

2. St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Australia

3. School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China

Abstract

Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD) with high incidence and prevalence in many countries. Patients with UC usually suffer from a lifetime of debilitating physical symptoms. Therefore, developing effective therapeutic strategy that can manage this disease better and improve patients’ life quality is in urgent need. Sesamin (SSM) is a lignan derived from sesame seeds. In this study, the protective effect of SSM against UC and the underlying mechanism were investigated in vitro and in vivo. Our data showed that SSM protected Caco-2 cells from H2O2-induced oxidative stress injury via GSH-mediated scavenging of reactive oxygen species (ROS). Dual luciferase reporter assay showed that the transcriptional activity of nuclear factor erythroid-related factor 2 (Nrf2) was significantly increased by SSM, and the ability of SSM to activate Nrf2-targeted genes was further confirmed in Caco-2 cells using western blot and quantitative real-time PCR (qRT-PCR). In contrast, Nrf2 knockdown abolished the protective effect of SSM. Additionally, we found that SSM also activated advanced protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) in Caco-2 cells, while either AKT or ERK inhibition can prevent SSM-mediated nuclear translocation of Nrf2. Furthermore, SSM displayed a better protective effect against dextran sulfate sodium- (DSS-) induced UC compared with 5-aminosalicylic acid (5-ASA) in C57BL/6 mice. The enhanced Nrf2 signaling and activated AKT/ERK were also observed in the colon of mice after SSM administration. These results first demonstrate the protective effect of SSM against UC and indicate that the effect is associated with AKT/ERK activation and subsequent Nrf2 signaling enhancement. This study provides a new insight into the medicinal value of SSM and proposes it as a new natural nutrition for better managing the symptoms of UC.

Funder

Guangdong Provincial Key Laboratory of Construction Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3