Multidomain Feature Fusion for Varying Speed Bearing Diagnosis Using Broad Learning System

Author:

Wu Tingting1,Zhuang Yufen1,Fan Bi1ORCID,Guo Hainan1,Fan Wei2ORCID,Yi Cai3,Xu Kangkang4

Affiliation:

1. College of Management, Shenzhen University, Shenzhen 518061, China

2. School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China

3. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

4. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

Abstract

Bearing is one of the most critical mechanical components in rotating machinery. To identify the running status of bearing effectively, a variety of possible fault vibration signals are recorded under multiple speeds. However, the acquired vibration signals have different characteristics under different speeds and environment interference, which may lead to different diagnosis results. In order to improve the fault diagnosis reliability, a multidomain feature fusion for varying speed bearing diagnosis using broad learning system is proposed. First, a multidomain feature fusion is adopted to realize the unified form of vibration characteristics at different speeds. Time-domain and frequency-domain features are extracted from the different speeds vibration signals. Then, the broad learning system is employed with the fused features for classification. Our experimental results suggest that, compared with other machine learning models, the proposed broad learning system model, which makes full use of the fused feature, can improve the diagnosis performance significantly in terms of both accuracy and robustness analysis.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3