A Novel Compressive Image Encryption with an Improved 2D Coupled Map Lattice Model

Author:

Liu Zhuo12ORCID,Wang Yong1ORCID,Zhang Leo Yu3ORCID,Ma Jun4ORCID

Affiliation:

1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. School of Mathematics and Big Data, Guizhou Education University, Guiyang 550018, China

3. School of Information Technology, Deakin University, Victoria 3216, Australia

4. Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

The digital image, as the critical component of information transmission and storage, has been widely used in the fields of big data, cloud and frog computing, Internet of things, and so on. Due to large amounts of private information in the digital image, the image protection is fairly essential, and the designing of the encryption image scheme has become a hot issue in recent years. In this paper, to resolve the shortcoming that the probability density distribution (PDD) of the chaotic sequences generated in the original two-dimensional coupled map lattice (2D CML) model is uneven, we firstly proposed an improved 2D CML model according to adding the offsets for each node after every iteration of the original model, which possesses much better chaotic performance than the original one, and also its chaotic sequences become uniform. Based on the improved 2D CML model, we designed a compressive image encryption scheme. Under the condition of different keys, the uniform chaotic sequences generated by the improved 2D CML model are utilized for compressing, confusing, and diffusing, respectively. Meanwhile, the message authentication code (MAC) is employed for guaranteeing that the encryption image be integration. Finally, theoretical analysis and simulation tests both demonstrate that the proposed image encryption scheme owns outstanding statistical, well encryption performance, and high security. It has great potential for ensuring the digital image security in application.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3