Affiliation:
1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2. School of Mathematics and Big Data, Guizhou Education University, Guiyang 550018, China
3. School of Information Technology, Deakin University, Victoria 3216, Australia
4. Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China
Abstract
The digital image, as the critical component of information transmission and storage, has been widely used in the fields of big data, cloud and frog computing, Internet of things, and so on. Due to large amounts of private information in the digital image, the image protection is fairly essential, and the designing of the encryption image scheme has become a hot issue in recent years. In this paper, to resolve the shortcoming that the probability density distribution (PDD) of the chaotic sequences generated in the original two-dimensional coupled map lattice (2D CML) model is uneven, we firstly proposed an improved 2D CML model according to adding the offsets for each node after every iteration of the original model, which possesses much better chaotic performance than the original one, and also its chaotic sequences become uniform. Based on the improved 2D CML model, we designed a compressive image encryption scheme. Under the condition of different keys, the uniform chaotic sequences generated by the improved 2D CML model are utilized for compressing, confusing, and diffusing, respectively. Meanwhile, the message authentication code (MAC) is employed for guaranteeing that the encryption image be integration. Finally, theoretical analysis and simulation tests both demonstrate that the proposed image encryption scheme owns outstanding statistical, well encryption performance, and high security. It has great potential for ensuring the digital image security in application.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Information Systems
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献