Affiliation:
1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei City, Anhui Province, China
Abstract
Research on the direct-expansion solar-assisted heat pump (DX-SAHP) system with bare plate evaporators for space heating is meaningful but insufficient. In this paper, experiments on a DX-SAHP system applying bare plate evaporators for space heating are conducted in the enthalpy difference lab with a solar simulator, with the ambient conditions stable. The independent effects of ambient temperature, solar irradiation, and relative humidity on the system performance are investigated. When ambient temperature changes as 5°C, 10°C, and 15°C, COP increases as 2.12, 2.18, and 2.26. When solar irradiance changes as 0 W m−2, 100 W m−2, 200 W m−2, 300 W m−2, and 500 W m−2, COP of the system changes as 2.07, 2.09, 2.14, 2.26, and 2.36. With ambient temperature of 5°C and solar irradiance of 0 W m−2, when relative humidity is 50%, no frost formed. Whereas with relative humidity of 70% and 90%, frost formed but not seriously frosted after 120 min of operating. Frost did not deteriorate but improved the heating performance of the DX-SAHP system. The change of relative humidity from 70% to 90% improves the evaporating heat exchange rate by 35.0% and increases COP by 16.3%, from 1.78 to 2.07.
Funder
DongGuan Innovative Research Team Program
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献