Optimisation of a Mouse Model of Cerebral Ischemia-Reperfusion to Address Issues of Survival and Model Reproducibility and Consistency

Author:

Liu Zhenqian1,Chen Mo1,Duan Xu1,Zhai Yujia1,Ma Bin1,Duan Zuowei1,Xu Jiang1,Liu Haiyan1ORCID

Affiliation:

1. Department of Neurology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China

Abstract

Middle cerebral artery occlusion (MCAO) induced brain ischemia-reperfusion model in Mice is essential for understanding the pathology of stroke and investigating potential treatments, in which a variety of methods may be employed to block the middle cerebral artery (MCA), the most common being through the insertion of a monofilament; however, in vivo ischemia-reperfusion models are associated, particularly in mice, with high variability in lesion volume and high mortality. We aimed to optimise a mouse model of cerebral ischemia-reperfusion, addressing issues of mouse survival, model reproducibility, and consistency. The model was optimised in two ways: first, insert the monofilament directly through the internal carotid artery rather than through the external or common carotid artery, and second, by extending the length of the silicone coating on the monofilament, the length of the silicone coating enables embolization of the beginning of the middle cerebral artery, as well as the anterior cerebral artery and part of the posterior communicating artery. Results: We assessed various parameters, including blood flow changes in the middle cerebral artery, stability of the infarct area, correlation between infarct volume percentages and neurological deficit scores, mortality, weight changes, and wellbeing. We found that optimisation of the surgical procedure may improve mouse wellbeing and reduce mortality, through reduced weight loss and decrease the variability. In conclusion, we suggest that the optimisation of the model is superior for the study of both short and long-term outcomes of ischemic stroke. These results have considerable implications on stroke model selection for researchers.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3