Green Synthesis, Characterization, and Antibacterial Activity of CuO/ZnO Nanocomposite Using Zingiber officinale Rhizome Extract

Author:

Takele Elias1ORCID,Feyisa Bogale Raji1ORCID,Shumi Gemechu1ORCID,Kenasa Girmaye2ORCID

Affiliation:

1. Department of Chemistry, College of Natural and Computational Sciences, Wallaga University, Nekemte 395, Ethiopia

2. Department of Biology, College of Natural and Computational Sciences, Wallaga University, Nekemte 395, Ethiopia

Abstract

The synthesis of metal oxide nanocomposite by using the green method has gotten special consideration due to a cheaper and eco-friendly approach. Decreasing antibiotic effectiveness calls for the fast advancement of other alternative antimicrobials. CuO, ZnO, and CuO/ZnO nanocomposites were successfully synthesized using Zingiber officinale rhizome extract as a mild, renewable, and nontoxic reducing agent and proficient stabilizer with the nonappearance of hazardous and toxic chemicals. UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) were used to characterize CuO, ZnO, and CuO/ZnO nanocomposites. The UV-Visible result showed the absorbance peak at 270 nm, 355 nm, 365 nm, and 370 nm corresponding to the characteristic band of CuO NPs, ZnO NPs, 10% CuO/ZnO, and 20% CuO/ZnO nanocomposites, respectively. FT-IR confirmed the nature of bonds and the presence of different functional groups in the Zingiber officinale rhizome extract, CuO, ZnO, and CuO/ZnO nanocomposites. The XRD analysis revealed that all the synthesized particles have a crystalline nature with a particle size of 4.35 nm, 14.54 nm, 18.41 nm, and 20.50 nm of CuO NPs, ZnO NPs, 10% CuO/ZnO, and 20% CuO/ZnO NCs, respectively. The synthesized nanoparticles and nanocomposites showed inhibition against Gram-positive and Gram-negative bacteria up to a concentration of 12.5 mg/mL. The highest inhibition against Staphylococcus aureus ATCC 25926 and Escherichia coli ATCC was 20 ± 0.7 mm and 16 ± 0.5 mm in diameter, respectively, by 50 mg/mL of 20% CuO/ZnO NCs. In general, the biosynthesized nanoparticles and nanocomposites showed effective antibacterial activity.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3