Effects of Tannic Acid Supplementation of a High-Carbohydrate Diet on the Growth, Serum Biochemical Parameters, Antioxidant Capacity, Digestive Enzyme Activity, and Liver and Intestinal Health of Largemouth Bass, Micropterus salmoides

Author:

Wang Yi12ORCID,Wu Jianjun3,Li Luoxin2,Yao Yuanfeng4,Chen Chiqing4,Hong Yucong5,Chai Yi1ORCID,Liu Wei2ORCID

Affiliation:

1. The College of Agriculture/College of Animal Sciences, Yangtze University, Jingzhou 434020, China

2. Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China

3. Wuhan SunHY Biology, Wuhan 430074, Hubei, China

4. Wufeng Chicheng Biotech Co. Ltd., Yichang, Hubei, China

5. Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, Guangdong, China

Abstract

We investigated the effects of dietary tannic acid (TA) supplementation of a high-carbohydrate diet on growth, feed utilization, whole-body proximate composition, serum biochemical indicators, antioxidant capacity, digestive enzyme activity, and liver and intestinal health of juvenile largemouth bass, Micropterus salmoides (initial mean weight: 8.08 ± 0.08 g). Five diets were prepared, including a positive control (dietary carbohydrate level, 16%, LC0), a negative control (dietary carbohydrate level, 21%, HC0), and three TA-supplementation diets based on the negative control diet with TA addition at 200, 400, and 800 mg/kg, respectively. After 8 weeks of feeding, the results showed that compared with the LC0 diet, 400–800 mg/kg dietary TA significantly improved the survival rate of largemouth bass (P<0.05) while significantly reducing its weight-gain rate and specific growth rate (P<0.05). Compared with the HC0 diet, 400 mg/kg dietary TA significantly increased serum catalase activity (P<0.05), and significantly decreased serum malondialdehyde, liver glycogen, lightness (L), and yellowness (b) (P<0.05). Moreover, compared with the HC0 diet, 200–400 mg/kg dietary TA effectively improved the vacuolation of hepatocytes caused by the high-carbohydrate diet and reduced the occurrence of intestinal epithelial cell vacuolation and necrosis. In turn, 800 mg/kg dietary TA significantly inhibited protease activity in the pyloric caecum and intestine (P<0.05). In conclusion, dietary supplementation with TA inhibited protease activity, which resulted in decreased growth performance in largemouth bass. However, it was also found that 200–400 mg/kg TA enhanced the antioxidant capacity of largemouth bass in the case of the high-carbohydrate diet, reduced liver glycogen levels, and improved liver and intestinal health. Finally, it should be noted that, when the dietary TA level exceeded 800 mg/kg, TA appeared to play a pro-oxidation role in the liver, which may cause oxidative stress in the liver.

Funder

Guangdong Provincial Key R & D Program

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3