Synthesis, Characterization, and Photocatalytic Performance of ZnFe2O4-g-C3N4 Composites for Tetracycline Removal from Contaminated Water

Author:

Samuel Humphrey Mutuma12ORCID,M’Arimi Milton M.1ORCID,Achisa Mecha Cleophas12ORCID

Affiliation:

1. Department of Chemical and Process Engineering, Moi University, P.O. BOX 3900-30100, Eldoret, Kenya

2. Renewable Energy, Nanomaterials and Water Research Group, Moi University, P.O. BOX 3900-30100, Eldoret, Kenya

Abstract

The presence of emerging contaminants in wastewater like tetracycline poses a significant challenge in water reuse worldwide. The implementation of a p-n heterojunction and dye-sensitized techniques in the enhancement of graphite carbon nitride provides a promising alternative for visible light-driven degradation of emerging contaminants present in wastewater. The present study investigated dye-sensitized and plain composites in degrading tetracycline using natural sunlight in a parabolic trough reactor. The study synthesized four composites of ZnFe2O4-g-C3N4 at 5, 15, and 25 wt% loading of the ferrite by direct annealing of melamine, followed by thermal and ultrasonic exfoliation of bulk graphite carbon nitride and in situ precipitation with zinc ferrites to yield a composite photocatalyst. The photocatalysts were characterized using X-ray diffraction (XRD) analyses which confirmed that all the spinel ferrite phases of ZnFe2O4 were well bonded with g-C3N4 nanosheets to form a composite. The crystallite sizes were calculated by the Debye–Scherrer equation indicating crystal sizes of between 4.63 and 8.61 nm confirming the nanostructures. The scanning electron microscope-energy dispersive spectroscopy (SEM-EDX) tests verified that the spherical globules of ZnFe2O4 were well attached to the mesoporous layers of g-C3N4 and absence of contaminant phases. The UV-Vis analysis for 25% ZF-GCN revealed a band gap reduction from 2.67 eV to 2.03 eV. The PL intensity for all the composites decreased at excitation of 266 nm and 550 nm which was evidence for suppressed charge recombination. A 25% ferrite loading resulted in the best photocatalytic performance with tetracycline degradation of 93.64% and total organic carbon (TOC) removal of 51.89%. The sensitization of the 25% ZF-GCN composite with Eosin Y further improved its performance for degradation of tetracycline to 94.62% and TOC removal to 68.29%. Therefore, dye sensitization is an efficient way of improving the photocatalytic activity of a multicomponent photocatalyst for the removal of emerging pollutants.

Funder

National Research Fund, Kenya

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3