Structural and Mechanistic Bases of Nuclear Calcium Signaling in Human Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes

Author:

Li Sen12,Keung Wendy12ORCID,Cheng Heping3,Li Ronald A.124ORCID

Affiliation:

1. Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Hong Kong

2. Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong

3. Institute of Molecular Medicine, Peking University, Beijing, China

4. Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong

Abstract

The loss of nonregenerative, terminally differentiated cardiomyocytes (CMs) due to aging or diseases is generally considered irreversible. Human pluripotent stem cells (hPSCs) can self-renew while maintaining their pluripotency to differentiate into all cell types, including ventricular (V) cardiomyocytes (CMs), to provide a potential unlimited ex vivo source of CMs for heart disease modeling, drug/cardiotoxicity screening, and cell-based therapies. In the human heart, cytosolic Ca2+ signals are well characterized but the contribution of nuclear Ca2+ is essentially unexplored. The present study investigated nuclear Ca2+ signaling in hPSC-VCMs. Calcium transient or sparks in hPSC-VCMs were measured by line scanning using a spinning disc confocal microscope. We observed that nuclear Ca2+, which stems from unitary sparks due to the diffusion of cytosolic Ca2+ that are mediated by RyRs on the nuclear reticulum, is functional. Parvalbumin- (PV-) mediated Ca2+ buffering successfully manipulated Ca2+ transient and stimuli-induced apoptosis in hPSC-VCMs. We also investigated the effect of Ca2+ on gene transcription in hPSC-VCMs, and the involvement of nuclear factor of activated T-cell (NFAT) pathway was identified. The overexpression of Ca2+-sensitive, nuclear localized Ca2+/calmodulin-dependent protein kinase II δB (CaMKIIδB) induced cardiac hypertrophy through nuclear Ca2+/CaMKIIδB/HDAC4/MEF2 pathway. These findings provide insights into nuclear Ca2+ signal in hPSC-VCMs, which may lead to novel strategies for maturation as well as improved systems for disease modeling, drug discovery, and cell-based therapies.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3