XueFu ZhuYu Decoction Alleviates Cardiopulmonary Bypass-Induced NLRP3 Inflammasome-Dependent Pyroptosis by Inhibiting IkB-α/NF-κB Pathway in Acute Lung Injury Rats

Author:

Li Hui1,Zhang Wenlei1,Lou Qiaoqin1,Chang Yuejin1,Lin Zhenhao1,Lou Lingli1ORCID

Affiliation:

1. Department of Intensive Care Unit, Hangzhou Third People’s Hospital, Zhejiang, Hangzhou, China

Abstract

XueFu ZhuYu Decoction (XFZYD) is an effective prescription that is widely used to improve blood circulation by removing blood stasis. This study aimed to investigate the effects and the underlying molecular mechanisms of XFZYD on lung pyroptosis in cardiopulmonary bypass- (CPB-) induced acute lung injury (ALI) rats. A rat model of ALI was induced by CPB treatment after XFZYD, Ac-YVAD-CMK, and Bay-11-7082 administration. The respiratory index (RI) and oxygenation index (OI) were determined at each time point. The levels of interleukin (IL)-1β, IL-6, IL-18, and TNF-α in serum and lung were measured by enzyme-linked immunosorbent assays (ELISA). Moreover, the protein levels, neutrophil counts, and total cell of bronchoalveolar lavage fluid (BALF) were detected. Additionally, Myeloperoxidase (MPO) expression was detected by immunohistochemical assay. Lung injury was evaluated with the wet/dry (W/D) ratio and pathologic changes, respectively. Besides, the expression of NLRP3 inflammasome and IkB-α/NF-κB pathway proteins was estimated by immunofluorescence, quantitative real-time PCR (qRT-PCR), and Western blotting assays, respectively. XFZYD pretreatment significantly ameliorated pulmonary ventilation function and reduced the CPB-induced lung histopathological injury, inflammatory cell infiltration in BALF and lung, and the apoptosis of lung cells. Interestingly, XFZYD decreased the CPB-induced NLRP3, ASC, Caspase-1 p20, Pro-GSDMD, GSDMD p30, IL-18, IL-1β p-P65, and p-IKBα mRNA or protein levels in lung tissues in ALI model rats. In summary, these findings suggest that XFZYD effectively mitigates NLRP3 inflammasome-dependent pyroptosis in CPB-induced ALI model rats, possibly by inhibiting the IkB-α/NF-κB pathway in the lung.

Funder

Science and Technology Development Plan Project of Hangzhou

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3