Artemisinin and Its Derivate Alleviate Pulmonary Hypertension and Vasoconstriction in Rodent Models

Author:

Bao Changlei12ORCID,He Qian1,Wang Hui1,Sun Yanan12,Xu Yahang1,Pan Yan3ORCID,Hu Yadan1,Zheng Shichuang12,Liang Shuxin2,Luo Ang1,Nahar Tanzilan45,Chen Jiwang45,Tang Haiyang2ORCID,Han Ying3ORCID

Affiliation:

1. College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China

2. State Key Laboratory of Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

3. Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing, China

4. Center for Cardiovascular Research, University of Illinois at Chicago, IL 60612, USA

5. Department of Medicine, University of Illinois at Chicago, IL 60612, USA

Abstract

Background. Pulmonary arterial hypertension (PAH) is a complex pulmonary vasculature disease characterized by progressive obliteration of small pulmonary arteries and persistent increase in pulmonary vascular resistance, resulting in right heart failure and death if left untreated. Artemisinin (ARS) and its derivatives, which are common antimalarial drugs, have been found to possess a broad range of biological effects. Here, we sought to determine the therapeutic benefit and mechanism of ARS and its derivatives treatment in experimental pulmonary hypertension (PH) models. Methods. Isolated perfused/ventilated lung and isometric tension measurements in arteries were performed to test pulmonary vasoconstriction and relaxation. Monocrotaline (MCT) and hypoxia+Su5416 (SuHx) were administered to rats to induce severe PH. Evaluation methods of ARS treatment and its derivatives in animal models include echocardiography, hemodynamics measurement, and histological staining. In vitro, the effect of these drugs on proliferation, viability, and hypoxia-inducible factor 1α (HIF1α) was examined in human pulmonary arterial smooth muscle cells (hPASMCs). Results. ARS treatment attenuated pulmonary vasoconstriction induced by high K+ solution or alveolar hypoxia, decreased pulmonary artery (PA) basal vascular tension, improved acetylcholine- (ACh-) induced endothelial-dependent relaxation, increased endothelial nitric oxide (NO) synthase (eNOS) activity and NO levels, and decreased levels of NAD(P)H oxidase subunits (NOX2 and NOX4) expression, NAD(P)H oxidase activity, and reactive oxygen species (ROS) levels of pulmonary arteries (PAs) in MCT-PH rats. NOS inhibitor, L-NAME, abrogated the effects of ARS on PA constriction and relaxation. Furthermore, chronic application of both ARS and its derivative dihydroartemisinin (DHA) attenuated right ventricular systolic pressure (RVSP), Fulton index (right ventricular hypertrophy), and vascular remodeling of PAs in the two rat PH models. In addition, DHA inhibited proliferation and migration of hypoxia-induced PASMCs. Conclusions. In conclusion, these results indicate that treatment with ARS or DHA can inhibit PA vasoconstriction, PASMC proliferation and migration, and vascular remodeling, as well as improve PA endothelium-dependent relaxation, and eventually attenuate the development and progression of PH. These effects might be achieved by decreasing NAD(P)H oxidase generated ROS production and increasing eNOS activation to release NO in PAs. ARS and its derivatives might have the potential to be novel drugs for the treatment of PH.

Funder

Open Project of the State Key Laboratory of Respiratory Disease

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3