IRF2 Destabilizes Oncogenic KPNA2 to Modulate the Development of Osteosarcoma

Author:

Xia Shuchi1,Ma Yiqun2ORCID

Affiliation:

1. Department of Dentistry, Zhongshan Hospital, Fudan University, Shanghai 200032, China

2. Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China

Abstract

Osteosarcomas (OS) are the most common primary malignant bone tumor. Emerging evidence revealed that karyopherin alpha 2 (KPNA2) was strongly associated with the tumorigenesis and development of numerous human cancers. The aim of the present study was to investigate the expression pattern, biological functions, and underlying mechanism of KPNA2 in OS. Bioinformatics TFBIND online was applied to forecast transcription factor (TF) binding sites in the promoter region of KPNA2. The expression profile of KPNA2 in OS tissues were firstly assessed. CCK8, colony formation, wound healing, and Transwell assays were used to assess cell viability, proliferation, and migration in vitro, and in vivo experiments were performed to explore the effects of KPNA2 and interferon regulatory factor-2 (IRF2) on tumor growth. Furthermore, the correlation between IRF2 and KPNA2 was investigated using chromatin immunoprecipitation (ChIP), RT-qPCR, western blot, and dual-luciferase assays. KPNA2 was obviously upregulated, while IRF2 decreased significantly in OS tissues and cell lines, as well as negatively correlated with each other. KPNA2 removal remarkably suppressed OS cell growth, migration, invasion in vitro, and tumor growth in vivo, while IRF2 knockdown exerts an opposing effect. IRF2 binds to the KPNA2 promoter to modulate the malignant phenotypes of OS cells by regulating epithelial-to-mesenchymal transition (EMT). The present study demonstrated that KPNA2 performed the oncogenic function, possibly regulating tumor development through EMT. Importantly, it was confirmed that IRF2 serves as a potential upstream TF of KPNA2 involved in the regulation of EMT progress in OS.

Publisher

Hindawi Limited

Subject

Oncology

Reference32 articles.

1. Translational biology of osteosarcoma

2. Osteosarcoma

3. Pediatric osteosarcoma: An updated review

4. Bone cancer: diagnosis and treatment principles;J. L. Ferguson;American Family Physician,2018

5. Understanding osteosarcomas

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3