Healing of Bone Defects in Pig’s Femur Using Mesenchymal Cells Originated from the Sinus Membrane with Different Scaffolds

Author:

Bou Assaf Rita1ORCID,Zibara Kazem23ORCID,Fayyad-Kazan Mohammad2ORCID,Al-Nemer Fatima2,Cordahi Manal4,Khairallah Saad4,Badran Bassam2,Berbéri Antoine1ORCID

Affiliation:

1. Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lebanese University, Beirut, Lebanon

2. Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon

3. PRASE, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon

4. Department of Histopathology, Faculty of Medicine, Lebanese University, Beirut, Lebanon

Abstract

Objective. Repairing bone defects, especially in older individuals with limited regenerative capacity, is still a big challenge. The use of biomimetic materials that can enhance the restoration of bone structure represents a promising clinical approach. In this study, we evaluated ectopic bone formation after the transplantation of human maxillary Schneiderian sinus membrane- (hMSSM-) derived cells embedded within various scaffolds in the femur of pigs. Methods. The scaffolds used were collagen, gelatin, and hydroxyapatite/tricalcium phosphate (HA/βTCP) where fibrin/thrombin was used as a control. Histological analysis was performed for the new bone formation. Quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) were used to assess mRNA and protein levels of specific osteoblastic markers, respectively. Results. Histological analysis showed that the three scaffolds we used can support new bone formation with a more pronounced effect observed in the case of the gelatin scaffold. In addition, mRNA levels of the different tested osteoblastic markers Runt-Related Transcription Factor 2 (RUNX-2), osteonectin (ON), osteocalcin (OCN), osteopontin (OPN), alkaline phosphatase (ALP), and type 1 collagen (COL1) were higher, after 2 and 4 weeks, in cell-embedded scaffolds than in control cells seeded within the fibrin/thrombin scaffold. Moreover, there was a very clear and differential expression of RUNX-2, OCN, and vimentin in osteocytes, osteoblasts, hMSSM-derived cells, and bone matrix. Interestingly, the osteogenic markers were more abundant, at both time points, in cell-embedded gelatin scaffold than in other scaffolds (collagen, HA/βTCP, fibrin/thrombin). Conclusions. These results hold promise for the development of successful bone regeneration techniques using different scaffolds embedded with hMSSM-derived cells. This trial is registered with NCT02676921.

Funder

National Council for Scientific Research

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3