Neural Networks for Survival Prediction in Medicine Using Prognostic Factors: A Review and Critical Appraisal

Author:

Kantidakis Georgios123ORCID,Hazewinkel Audinga-Dea1245ORCID,Fiocco Marta126ORCID

Affiliation:

1. Mathematical Institute Leiden University, Niels Bohrweg 1, 2333 Leiden, ZA, Netherlands

2. Department of Biomedical Data Sciences, Section Medical Statistics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 Leiden, ZA, Netherlands

3. Department of Statistics, European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Ave E. Mounier 83/11, 1200 Brussels, Belgium

4. Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield Grove, Clifton, Bristol BS8 2BN, UK

5. MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Oakfield Grove, Bristol BS8 2BN, UK

6. Trial and Data Center, Princess Máxima Center for pediatric oncology (PMC), Heidelberglaan 25, 3584 Utrecht, UT, Netherlands

Abstract

Survival analysis deals with the expected duration of time until one or more events of interest occur. Time to the event of interest may be unobserved, a phenomenon commonly known as right censoring, which renders the analysis of these data challenging. Over the years, machine learning algorithms have been developed and adapted to right-censored data. Neural networks have been repeatedly employed to build clinical prediction models in healthcare with a focus on cancer and cardiology. We present the first ever attempt at a large-scale review of survival neural networks (SNNs) with prognostic factors for clinical prediction in medicine. This work provides a comprehensive understanding of the literature (24 studies from 1990 to August 2021, global search in PubMed). Relevant manuscripts are classified as methodological/technical (novel methodology or new theoretical model; 13 studies) or applications (11 studies). We investigate how researchers have used neural networks to fit survival data for prediction. There are two methodological trends: either time is added as part of the input features and a single output node is specified, or multiple output nodes are defined for each time interval. A critical appraisal of model aspects that should be designed and reported more carefully is performed. We identify key characteristics of prediction models (i.e., number of patients/predictors, evaluation measures, calibration), and compare ANN’s predictive performance to the Cox proportional hazards model. The median sample size is 920 patients, and the median number of predictors is 7. Major findings include poor reporting (e.g., regarding missing data, hyperparameters) as well as inaccurate model development/validation. Calibration is neglected in more than half of the studies. Cox models are not developed to their full potential and claims for the performance of SNNs are exaggerated. Light is shed on the current state of art of SNNs in medicine with prognostic factors. Recommendations are made for the reporting of clinical prediction models. Limitations are discussed, and future directions are proposed for researchers who seek to develop existing methodology.

Funder

UK Medical Research Council and the University of Bristol

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3