δ-Opioid Receptor Activation Inhibits Ferroptosis by Activating the Nrf2 Pathway in MPTP-Induced Parkinson Disease Models

Author:

Cai Benchi1ORCID,Zhong Lifan1ORCID,Liu Yanhui1,Xu Qian1ORCID,Chen Tao1ORCID

Affiliation:

1. Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, China

Abstract

Introduction. Recent studies suggest the involvement of ferroptosis in the pathogenesis of Parkinson disease (PD). δ-Opioid receptors (DORs) have neuroprotective effects in PD. It is not known whether the neuroprotective effects of DORs in PD are attributable to the inhibition of ferroptosis. Therefore, we aimed to investigate the role of DORs in ferroptosis in MPTP-induced PD models. Methods. To identify the influence of DORs on ferroptosis in MPTP-induced PD models, we measured the malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels, analyzed the levels of ferroptosis-related proteins (GXP4 and SLC7a11) and Nrf2 expression by using western blotting, and assessed mitochondrial dysfunction by using JC-1 staining and transmission electron microscopy. Results. DOR activation reduced the 4-HNE and MDA levels, increased the GXP4 and SLC7a11 levels, and ameliorated mitochondrial dysfunction in MPTP-induced PD models. These neuroprotective effects of DORs could be blocked by Nrf2-siRNA. Thus, the effects of DORs on ferroptosis in PD models were partially controlled by Nrf2, which regulated GXP4 and SLC7a11 synthesis. Conclusion. DORs exert neuroprotective effects in PD models by inhibiting ferroptosis partially via activating the Nrf2 pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3