Affiliation:
1. Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada K1S 5B6
Abstract
The present study investigates the vibration and sound radiation by panels exited by turbulent flow and by random noise. Composite and aluminum panels are analyzed through a developed analytical framework. The main objective of this study is to identify the difference between the vibroacoustic behaviour of these two types of panels. This topic is of particular importance, given the growing interest in applying composite materials for the construction of aircraft structures, in parts where aluminum panels were traditionally being used. An original mathematical framework is presented for the prediction of noise and vibration for composite panels. Results show the effect of panel size, thickness of core, and thickness of face layers on the predictions. Smaller composite panels generally produced lower levels of sound and vibration than longer and wider composite panels. Compared with isotropic panels, the composite panels analyzed generated lower noise levels, although it was observed that noise level was amplified at certain frequencies.
Funder
National Science and Engineering Research Council of Canada
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献