The Role of Ubiquitin-Proteasome System in the Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus-2 Disease

Author:

Seyoum Tola Fikadu1ORCID

Affiliation:

1. Department of Medical Biochemistry, College of Medicine and Health Sciences, Ambo University, PO. Box. 19, Addis Ababa, Ethiopia

Abstract

Different protein degradation pathways exist in cells. However, the bulk of cellular proteins are degraded by the ubiquitin-proteasome system (UPS), which is one of these pathways. The upkeep of cellular protein homeostasis is facilitated by the ubiquitin-proteasome system, which has a variety of important functions. With the emergence of eukaryotic organisms, the relationship between ubiquitylation and proteolysis by the proteasome became apparent. Severe acute respiratory syndrome coronavirus-2 (SARS-Coronavirus-2) hijacks the ubiquitin-proteasome system and causes their viral proteins to become ubiquitinated, facilitating assembly and budding. Ubiquitination of the enzyme keratin-38 (E-K38) residue gave the virion the ability to engage with at least one putative cellular receptor, T-cell immunoglobin-mucin (TIM-1), boosting virus entry, reproduction, and pathogenesis. A fraction of infectious viral particles produced during replication have been ubiquitinated. The ubiquitin system promotes viral replication. In order to replicate their viral genome after entering the host cell, viruses combine the resources of the host cell with recently generated viral proteins. Additionally, viruses have the ability to encode deubiquitinating (DUB)-active proteins that can boost viral replication through both direct and indirect means. The SARS-Coronavirus-2 papain-like protease (PLpro) protein is a DUB enzyme that is necessary for breaking down viral polyproteins to create a working replicase complex and promote viral propagation. The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15), which is likewise a regulator of the innate immune response and has antiviral characteristics, can also be broken down by this enzyme. However, limiting the E1-activating enzyme’s ability to suppress the ubiquitination pathway prevented virus infection but did not prevent viral RNA genome translation. Numerous investigations have revealed that the use of proteasome inhibitors has a detrimental effect on the replication of SARS-Coronavirus-2 and other viruses in the host cell. Studies have shown that the use of proteasome inhibitors is also known to deplete free cellular ubiquitin, which may have an impact on viral replication and other vital cellular functions.

Publisher

Hindawi Limited

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3