GSPE Protects against Bleomycin-Induced Pulmonary Fibrosis in Mice via Ameliorating Epithelial Apoptosis through Inhibition of Oxidative Stress

Author:

Sul Ok Joo1ORCID,Kim Jin Hyoung2,Lee Taehoon2,Seo Kwang Won2,Cha Hee Jeong3,Kwon Byungsuk4,Ahn Jong-Joon2,Cho You Sook5,Oh Yeon-Mok6,Jegal Yangjin2ORCID,Ra Seung Won2ORCID

Affiliation:

1. Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan 44033, Republic of Korea

2. Department of Pulmonary and Critical Care Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea

3. Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44033, Republic of Korea

4. School of Biological Science, University of Ulsan, Ulsan 44610, Republic of Korea

5. Department Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea

6. Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of unknown cause which leads to alveolar epithelial cell apoptosis followed by basement membrane disruption and accumulation of extracellular matrix, destroying the lung architecture. Oxidative stress is involved in the development of alveolar injury, inflammation, and fibrosis. Oxidative stress-mediated alveolar epithelial cell (AEC) apoptosis is suggested to be a key process in the pathogenesis of IPF. Therefore, the present study investigated whether grape seed proanthocyanidin extract (GSPE) could inhibit the development of pulmonary fibrosis via ameliorating epithelial apoptosis through the inhibition of oxidative stress. We found that GSPE significantly ameliorated the histological changes and the level of collagen deposition in bleomycin (BLM)-induced lungs. Moreover, GSPE attenuated lung inflammation by reducing the total number of cells in bronchoalveolar lavage (BAL) fluid and decreasing the expression of IL-6. We observed that the levels of H2O2 leading to oxidative stress were increased following BLM instillation, which significantly decreased with GSPE treatment both in vivo and in vitro. These findings showed that GSPE attenuated BLM-induced epithelial apoptosis in the mouse lung and A549 alveolar epithelial cell through the inhibition of oxidative stress. Furthermore, GSPE could attenuate mitochondrial-associated cell apoptosis via decreasing the Bax/Bcl-2 ratio. The present study demonstrates that GSPE could ameliorate bleomycin-induced pulmonary fibrosis in mice via inhibition of epithelial apoptosis through the inhibition of oxidative stress.

Funder

Korean government

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3