The Underlying Molecular Basis and Mechanisms of Venous Thrombosis in Patients with Osteomyelitis: A Data-Driven Analysis

Author:

Chen Peisheng123ORCID,Liu Yinhuan4ORCID,Lin Xiaofeng5ORCID,Yu Bin6ORCID,Chen Bin123ORCID,Lin Fengfei123ORCID

Affiliation:

1. Department of Orthopaedics, Fuzhou Second Hospital of Xiamen University, School of Medicine, Xiamen University, Fuzhou 350007, China

2. Department of Orthopaedics, Fuzhou Second Hospital, The Third Clinical Medical College, Fujian Medical University, Fuzhou 350007, China

3. Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma, Fuzhou Trauma Medical Center, Fuzhou 350007, China

4. Department of Laboratory Medicine, Fuzhou Second Hospital, Fuzhou 350007, China

5. Department of Endocrinology, Fuzhou Second Hospital, Fuzhou 350007, China

6. Division of Orthopaedics & Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China

Abstract

Objective. Osteomyelitis (OM) is one of the most risky and challenging diseases. Emerging evidence indicates OM is a risk factor for increasing incidence of venous thromboembolism (VTE) development. However, the mechanisms have not been intensively investigated. Methods. The OM-related dataset GSE30119 and VTE-related datasets GSE19151 and GSE48000 were downloaded from the Gene Expression Omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) (OMGs1 and VTEGs1, respectively). Functional enrichment analyses of Gene Ontology (GO) terms were performed. VTEGs2 and OMGs2 sharing the common GO biological process (GO-BP) ontology between OMGs1 and VTEGs1 were detected. The TRRUST database was used to identify the upstream transcription factors (TFs) that regulate VTEGs2 and OMGs2. The protein-protein interaction (PPI) network between VTEGs2 and OMGs2 was constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and then visualized in Cytoscape. Topological properties of the PPI network were calculated by NetworkAnalyzer. The Molecular Complex Detection (MCODE) plugin was utilized to perform module analysis and choose the hub modules of the PPI network. Results. A total of 587 OMGs1 and 382 VTEGs1 were identified from the related dataset, respectively. GO-BP terms of OMGs1 and shared DGEs1 were mainly enriched in the neutrophil-related immune response process, and the shared GO-BP terms of OMGs1 and VTEGs1 seemed to be focused on cell activation, immune, defense, and inflammatory response to stress or biotic stimulus. 230 VTEGs2, 333 OMGs2, and 13 shared DEGs2 were detected. 3 TF-target gene pairs (SP1-LSP1, SPI1-FCGR1A, and STAT1-FCGR1A) were identified. The PPI network contained 1611 interactions among 467 nodes. The top 10 hub proteins were TP53, IL4, MPO, ELANE, FOS, CD86, HP, SOCS3, ICAM1, and SNRPG. Several core nodes (such as MPO, ELANE, and CAMP) were essential components of the neutrophil extracellular traps (NETs) network. Conclusion. This is the first data-mining study to explore shared signatures between OM and VTE by the integrated bioinformatic approach, which can help uncover potential biomarkers and therapeutic targets of OM-related VTE.

Funder

Health Scientific Innovation Platform Program of Fuzhou

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3