Study on Adaptive Excitation System of Transmission Line Galloping Based on Electromagnetic Repulsive Mechanism

Author:

Ruan Jiangjun1ORCID,Zhang Li1ORCID,Cai Wei23,Huang Daochun1,Li Jian23,Feng Zhihui23

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

2. Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute, Wuhan 430074, China

3. Hubei Key Laboratory of Power Grid Lightning Risk Prevention, Wuhan 430074, China

Abstract

Due to the uncontrollable weather conditions, it is difficult to carry out the controllable prototype test to study fatigue damage of transmission tower and armour clamp and the effect evaluation of antigalloping device under actual transmission line galloping. Considering the geometric nonlinearity of the transmission line system, this study proposed an adaptive excitation method to establish the controllable transmission line galloping test system based on the Den Hartog vertical oscillation mechanism. It can skip the complicated process of nonlinear aerodynamic force simulation. An electromagnetic repulsion mechanism based on the eddy current principle was designed to provide periodic excitation for the conductor system according to the adaptive excitation method. The finite element model, including conductor, insulator string, and electromagnetic mechanism, was established. Newmark method and fourth-order Runge-Kutta algorithm were used to complete the integrated simulation calculation. By comparing with the measured data record of the actual transmission line galloping test, the results show that the proposed adaptive galloping excitation system can effectively reconstruct the key characteristics of the actual transmission line galloping, such as amplitude, frequency, galloping mode, and dynamic tension, and make the galloping state controllable. Thus, a series of research about transmission line galloping with practical engineering significance can be carried out.

Funder

Key R&D Program of Hubei Province

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3