Prediction of the Active Components and Possible Targets of Xanthii Fructus Based on Network Pharmacology for Use in Chronic Rhinosinusitis

Author:

Ding Shun1,Duan Tingting1ORCID,Xu Zhengyang1,Qiu Dongqin1,Yan Jingren1,Mu Zhonglin1ORCID

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China

Abstract

Chronic rhinosinusitis (CRS) is a complex condition brought on for many reasons, and its prevalence is rising gradually around the world. Xanthii Fructus (XF) has been used in the treatment of CRS for decades and is effective. The chemical and pharmacological profiles of XF, on the other hand, are still unknown and need to be clarified. The potential mechanisms of XF in CRS treatment were investigated using a network pharmacology approach in this study. OB and DL were in charge of screening the bioactive components in XF and drug-likeness. TCMSP and PubChem databases were used to identify prospective XF proteins, whereas GeneCards and the DisGeNET database were used to identify potential CRS genes. An interactive network of XF and CRS is built using the STRING database based on common goals identified by the online tool Venny. Cytoscape was used to visualize the topological characteristics of nodes, while the biological function pathways were identified by GO Knowledge Base, KEGG. There were 26 bioactive components and 115 potential targets in XF that bind to CRS or are considered therapeutically relevant. Five significant signaling pathways have been found for CRS by the pathway analysis including the HIF-1 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and PI3K-Akt signaling pathway. We simultaneously confirmed that the PI3K-Akt pathway promotes the development of CRS. Finally, this study took a holistic approach to the pharmacological actions and molecular mechanisms of XF in the treatment of CRS. TNF, INS, CCL2, CXCL8, IL-10, VEGFA, and IL-6 have all been identified as potential targets for anti-inflammatory and immune-boosting effects. This network pharmacology prediction could be useful in manifesting the molecular mechanisms of the Chinese herbal compound XF for CRS.

Funder

National Foundation of Natural Science of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3