Buyang Huanwu Decoction Enhances Revascularization via Akt/GSK3β/NRF2 Pathway in Diabetic Hindlimb Ischemia

Author:

Bao Xiao-Yi1ORCID,Deng Li-Hui1ORCID,Huang Zi-Jun1ORCID,Daror Abdirizak S.1ORCID,Wang Zi-Hao1ORCID,Jin Wang-Jun1ORCID,Zhuang Zhuang1ORCID,Tong Qiang1ORCID,Zheng Guo-Qing12ORCID,Wang Yan12ORCID

Affiliation:

1. Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, China

2. Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), China

Abstract

Background. Peripheral arterial disease (PAD) is a typical disease of atherosclerosis, most commonly influencing the lower extremities. In patients with PAD, revascularization remains a preferred treatment strategy. Buyang Huanwu decoction (BHD) is a popular Chinese herbal prescription which has showed effects of cardiovascular protection through conducting antioxidant, antiapoptotic, and anti-inflammatory effects. Here, we intend to study the effect of BHD on promoting revascularization via the Akt/GSK3β/NRF2 pathway in diabetic hindlimb ischemia (HLI) model of mice. Materials and Methods. All db/db mice ( n = 60 ) were randomly divided into 6 groups by table of random number. (1) Sham group ( N = 10 ): 7-0 suture thread passed through the underneath of the femoral artery and vein without occlusion. The remaining 5 groups were treated differently on the basis of the HLI (the femoral artery and vein from the inguinal ligament to the knee joint were transected and the vascular stump was ligated with 7-0 silk sutures) model: (2) HLI+NS group ( N = 15 ): 0.2 ml NS was gavaged daily for 3 days before modeling and 14 days after occlusion; (3) HLI+BHD group ( N = 15 ): 0.2 ml BHD (20 g/kg/day) was gavaged daily for 3 days before modeling and 14 days after occlusion; (4) HLI+BHD+sh-NC group ( N = 8 ): local injection of adenovirus vector carrying the nonsense shRNA (Ad-GFP) in the hindlimbs of mice before treatment; (5) HLI+BHD+sh-NRF2 group ( N = 8 ): knockdown of NRF2 in the hindlimbs of mice by local intramuscular injection of adenovirus vector carrying NRF2 shRNA (Ad-NRF2-shRNA) before treatment; and (6) HLI+BHD+LY294002 group ( N = 4 ): intravenous injection of LY294002 (1.5 mg/kg) once a day for 14 days on the basis of the HLI+BHD group. Laser Doppler examination, vascular cast, and immunofluorescence staining were applied to detect the revascularization of lower limbs in mice. Western blot analysis was used to detect the expression of vascular endothelial growth factor (VEGF), interleukin-1beta (IL-1β), interleukin-6 (IL-6), tumor necrosis factor- (TNF-) α, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase quinone-1 (NQO-1), catalase (CAT), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphorylated protein kinase B (p-AKT), and phosphorylated glycogen synthase kinase-3 beta (p-GSK3β). HE staining was used to assess the level of muscle tissue damage and inflammation in the lower extremities. Local multipoint injection of Ad-NRF2-shRNA was used to knock down NRF2, and qPCR was applied to detect the mRNA level of NRF2. The blood glucose, triglyceride, cholesterol, MDA, and SOD levels of mice were tested using corresponding kits. The SPSS 20.0 software and GraphPad Prism 6.05 were used to do all statistics. Values of P < 0.05 were considered as statistically significant. Results and Conclusions. BHD could enhance the revascularization of lower limbs in HLI mice, while BHD has no effect on blood glucose and lipid level in db/db mice ( P > 0.05 ). BHD could elevate the protein expression of VEGF, HO-1, NQO-1, and CAT ( P < 0.05 ) and decrease the expression of IL-1β, IL-6, and TNF-α ( P < 0.05 ) in HLI mice. Meanwhile, BHD could activate NRF2 and promote the phosphorylation of AKT/GSK3β during revascularization ( P < 0.05 ). In contrast, knockdown of NRF2 impaired the protective effects of BHD on HLI ( P < 0.05 ). LY294002 inhibited the upregulation of NRF2 activated by BHD through inhibiting the phosphorylation of the AKT/GSK3β pathway ( P < 0.05 ). The present study demonstrated that BHD could promote revascularization on db/db mice with HLI through targeting antioxidation, anti-inflammation, and angiogenesis via the AKT/GSK3β/NRF2 pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3