Investigation to Improve the Pool Boiling Heat Transfer Characteristics Using Laser-Textured Copper-Grooved Surfaces

Author:

Mani Dharmendra1,Sivan Suresh1ORCID,Ali Hafiz Muhammad2,Ganesan Udaya Kumar3

Affiliation:

1. Nanotechnology Research Laboratory, Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, India

2. Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

3. Two-Phase Flow Laboratory, Department of Mechanical Engineering, Kookmin University, Seoul, Republic of Korea

Abstract

Improving the performance of pool boiling with critical heat flux of pool boiling and enhancing the coefficient of heat transfer through surface modification technique have gained a lot of attention. These surface modifications can be done at different scales using various techniques. However, along with the performance improvement, the durability and stability of the surface modification are very crucial. Laser machining is an attractive option in this aspect and is gaining a lot of attention. In the present experimentation research work, pool boiling attributed performance of copper-grooved surfaces obtained through picosecond laser machining method is investigated. The performance of the modified surfaces was compared with the plain surface serving as reference. In this, three square grooved patterns with the same pitch (100 μm) and width (100 μm) but different depths (30, 70, and 100 μm) were investigated. Different depths were obtained by varying the scanning speed of the laser machine. In addition to the microchannel effect, the grain structuring during the laser machining process creates additional nucleation sites which has proven its effectiveness in improving the pool boiling performance. In all aspects, the pool boiling performance of the grooved laser-textured surface has showed increased surface characterisation as compared with the surface of copper.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3