NOX2-Dependent Reactive Oxygen Species Regulate Formyl-Peptide Receptor 1-Mediated TrkA Transactivation in SH-SY5Y Cells

Author:

Castaldo Martina1,Zollo Cristiana1,Esposito Gabriella1,Ammendola Rosario1ORCID,Cattaneo Fabio1ORCID

Affiliation:

1. Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Naples, Italy

Abstract

Several enzymes are capable of producing reactive oxygen species (ROS), but only NADPH oxidases (NOX) generate ROS as their primary and sole function. In the central nervous system, NOX2 is the major source of ROS, which play important roles in signalling and functions. NOX2 activation requires p47phox phosphorylation and membrane translocation of cytosolic subunits. We demonstrate that SH-SY5Y cells express p47phox and that the stimulation of Formyl-Peptide Receptor 1 (FPR1) by N-fMLP induces p47phox phosphorylation and NOX-dependent superoxide generation. FPR1 is a member of the G protein-coupled receptor (GPCR) family and is able to transphosphorylate several tyrosine kinase receptors (RTKs). This mechanism requires ROS as signalling intermediates and is necessary to share information within the cell. We show that N-fMLP stimulation induces the phosphorylation of cytosolic Y490, Y751, and Y785 residues of the neurotrophin receptor TrkA. These phosphotyrosines provide docking sites for signalling molecules which, in turn, activate Ras/MAPK, PI3K/Akt, and PLC-γ1/PKC intracellular cascades. N-fMLP-induced ROS generation plays a critical role in FPR1-mediated TrkA transactivation. In fact, the blockade of NOX2 functions prevents Y490, Y751, and Y785 phosphorylation, as well as the triggering of downstream signalling cascades. Moreover, we observed that FPR1 stimulation by N-fMLP also improves proliferation, cellular migration, and neurite outgrowth of SH-SY5Y cells.

Funder

Università degli Studi di Napoli Federico II

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3