miR-33a Expression Attenuates ABCA1-Dependent Cholesterol Efflux and Promotes Macrophage-Like Cell Transdifferentiation in Cultured Vascular Smooth Muscle Cells

Author:

Esobi Ikechukwu C.1,Oladosu Olanrewaju1,Echesabal-Chen Jing1,Powell Rhonda R.2,Bruce Terri2,Stamatikos Alexis1ORCID

Affiliation:

1. Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA

2. Clemson Light Imaging Facility, Clemson University, Clemson, SC 29634, USA

Abstract

Recent evidence suggests that the majority of cholesterol-laden cells found in atherosclerotic lesions are vascular smooth muscle cells (VSMC) that have transdifferentiated into macrophage-like cells (MLC). Furthermore, cholesterol-laden MLC of VSMC origin have demonstrated impaired ABCA1-dependent cholesterol efflux, but it is poorly understood why this occurs. A possible mechanism which may at least partially be attributed to cholesterol-laden MLC demonstrating attenuated ABCA1-dependent cholesterol efflux is a miR-33a expression, as a primary function of this microRNA is to silence ABCA1 expression, but this has yet to be rigorously investigated. Therefore, the VSMC line MOVAS cells were used to generate miR-33a knockout (KO) MOVAS cells, and we used KO and wild-type (WT) MOVAS cells to delineate any possible proatherogenic role of miR-33a expression in VSMC. When WT and KO MOVAS cells were cholesterol-loaded to convert into MLC, this resulted in the WT MOVAS cells to exhibit impaired ABCA1-dependent cholesterol efflux. In the cholesterol-loaded WT MOVAS MLC, we also observed a delayed restoration of the VSMC phenotype when these cells were exposed to the ABCA1 cholesterol acceptor, apoAI. These results imply that miR-33a expression in VSMC drives atherosclerosis by triggering MLC transdifferentiation via attenuated ABCA1-dependent cholesterol efflux.

Funder

NSF MRI

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3