Hyaluronic Acid Improves Hydrogen Peroxide Modulatory Effects on Calcium Channel and Sodium-Potassium Pump in 4T1 Breast Cancer Cell Line

Author:

Abbasi Ardeshir1ORCID,Pakravan Nafiseh2ORCID,Hassan Zuhair Mohammad1ORCID

Affiliation:

1. Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2. Department of Immunology, Medical School, Alborz University of Medical Sciences, Karaj, Iran

Abstract

Maintaining homeostasis of ion concentrations is critical in cancer cells. Under hypoxia, the levels of channels and pumps in cancer cells are more active than normal cells suggesting ion channels as a suitable therapeutic target. One of the contemporary ways for cancer therapy is oxidative stress. However, the effective concentration of oxidative stress on tumor cells has been reported to be toxic for normal cells as well. In this study, we benefited from the modifying effects of hyaluronic acid (HA) on H2O2, as a free radical source, to make a gradual release of oxidative stress on cancer cells while preventing/decreasing damage to normal cells under normoxia and hypoxic conditions. To do so, we initially investigated the optimal concentration of HA antioxidant capacity by the DPPH test. In the next step, we found optimum H2O2 dose by treating the 4T1 breast cancer cell line with increasing concentrations (0, 10, 20, 50,100, 200, 500, and 1000 μM) of H2O2 alone or H2O2 + HA (83%) for 24 hrs. The calcium channel and the sodium-potassium pumps were then evaluated by measuring the levels of calcium, sodium, and potassium ions using an atomic absorption flame spectrophotometer. The results revealed that treatment with H2O2 or H2O2+ HA led to an intracellular increase of calcium, sodium, and potassium in the normoxic and hypoxic circumstances in a dose-dependent manner. It is noteworthy that H2O2 + HA treatment had more favorable and controllable effects compared with H2O2 alone. Moreover, HA optimizes the antitumor effect of oxidative stress exerted by H2O2 making H2O2 + HA suitable for clinical use in cancer treatment along with chemotherapy.

Funder

Tarbiat Modares University

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Reference63 articles.

1. Current Landscape of Immunotherapy in Breast Cancer

2. Breast Tumor Cells Highly Resistant to Drugs Are Controlled Only by the Immune Response Induced in an Immunocompetent Mouse Model

3. Environmental epidemiology of malignancies. The central European perspective;I. Holcatova;Central European journal of public health.,1998

4. Calcium signalling and regulation of cell function;M. D. Bootman;e LS,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3