Identification of FOS as a Candidate Risk Gene for Liver Cancer by Integrated Bioinformatic Analysis

Author:

Hu Jin-Wu12,Ding Guang-Yu1,Fu Pei-Yao1ORCID,Tang Wei-Guo3,Sun Qi-Man1,Zhu Xiao-Dong1,Shen Ying-Hao1,Zhou Jian1,Fan Jia1,Sun Hui-Chuan1,Huang Cheng1ORCID

Affiliation:

1. Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China

2. Department of General Surgery, Shanghai Tenth People’s Hospital Affiliated with Tongji University, 301 Yanchang Road, Shanghai 200072, China

3. Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai 201199, China

Abstract

Liver cancer is a lethal disease that is associated with poor prognosis. In order to identify the functionally important genes associated with liver cancer that may reveal novel therapeutic avenues, we performed integrated analysis to profile miRNA and mRNA expression levels for liver tumors compared to normal samples in The Cancer Genome Atlas (TCGA) database. We identified 405 differentially expressed genes and 233 differentially expressed miRNAs in tumor samples compared with controls. In addition, we also performed the pathway analysis and found that mitogen-activated protein kinases (MAPKs) and G-protein coupled receptor (GPCR) pathway were two of the top significant pathway nodes dysregulated in liver cancer. Furthermore, by examining these signaling networks, we discovered that FOS (Fos proto-oncogene, AP-1 transcription factor subunit), LAMC2 (laminin subunit gamma 2), and CALML3 (calmodulin like 3) were the most significant gene nodes with high degrees involved in liver cancer. The expression and disease prediction accuracy of FOS, LAMC2, CALML3, and their interacting miRNAs were further performed using a HCC cohort. Finally, we investigated the prognostic significance of FOS in another HCC cohort. Patients with higher FOS expression displayed significantly shorter time to recurrence (TTR) and overall survival (OS) compared with patients with lower expression. Collectively, our study demonstrates that FOS is a potential prognostic marker for liver cancer that may reveal a novel therapeutic avenue in this lethal disease.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3