Identification of CeRNA Regulatory Networks in Atrial Fibrillation Using Nanodelivery

Author:

Lin Ping1,Meng Lingqiang2,Lyu Lei3ORCID

Affiliation:

1. Department of Cardiology, Dongying Traditional Chinese Medicine Hospital, Dongying 257055, Shandong, China

2. Department of Laboratory, Dongying Traditional Chinese Medicine Hospital, Dongying 257055, Shandong, China

3. Department of Geriatrics, Dongying Traditional Chinese Medicine Hospital, Dongying 257055, Shandong, China

Abstract

The initiation and maintenance of AF is a complex biological process that is the ultimate manifestation of many cardiovascular diseases. And the pathogenesis of atrial fibrillation (AF) is unclear. Therefore, this study aimed to find the potential competing endogenous RNAs (ceRNAs) network and molecular dysregulation mechanism associated with AF. GSE135445, GSE2240, and GSE68475 were obtained from the Gene Expression Omnibus (GEO). Differential analysis was utilized to identify the differentially expressed mRNAs, miRNAs, and lncRNAs between AF and sinus rhythms (SR). AF-associated mRNAs and nanomaterials were screened and their biological functions and KEGG signaling pathways were identified. Nanomaterials for targeted delivery are uniquely capable of localizing the delivery of therapeutics and diagnostics to diseased tissues. The target mRNAs and target lncRNAs of differentially expressed miRNAs were identified using TargetScan and LncBase databases. Finally, we constructed the ceRNAs network and its potential molecular regulatory mechanism. We obtained 643 AF-associated mRNAs. They were significantly involved in focal adhesion and the PI3K-Akt signaling pathway. Among the 16 differentially expressed miRNAs identified, 31 differentially expressed target mRNAs, as well as 5 differentially expressed target lncRNAs were identified. Among them, we obtained 2 ceRNAs networks (hsa-miR-125a-5p and hsa-let-7a-3p). The aberrant expression of network target genes in AF mainly activated the HIF-1 signaling pathway. We speculated that the interaction pairs of miR-125a-5p and let-7a-3p with target mRNAs and target lncRNAs may be involved in AF. Our findings have a positive influence on investigating the pathogenesis of AF and identifying potential therapeutic targets.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3