Longitudinal Reservoir Evaluation Technique for Tight Oil Reservoirs

Author:

Luo Yutian123ORCID,Yang Zhengming13ORCID,Tang Zhenxing4,Zhou Sibin5,Wu Jinwei5,Xiao Qianhua6ORCID

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China

3. Research Institute of Petroleum Exploration and Development, Petrochina, Langfang, Hebei 065007, China

4. Exploration and Development Research Institute, Jilin Oilfield Company, Songyuan 138001, China

5. Exploration and Development Research Institute of Sinopec North China Branch, Zhengzhou 450006, China

6. Chongqing University of Science and Technology, Chongqing 401331, China

Abstract

Reservoir evaluation is a method for classifying reservoirs and the description of heterogeneity quantitatively. In this study, according to the characteristics of longitudinal physical properties of tight oil reservoirs, advanced experimental techniques such as nuclear magnetic resonance, high pressure mercury intrusion, and X-ray diffraction were adopted; the flow capacity, reservoir capacity, ability to build an effective displacement system, and the ability to resist damage in reservoir reconstruction were considered as evaluation indexes; average throat radius, percentage of movable fluid, start-up pressure gradient, and the content of clay minerals were taken as the evaluation parameters. On the above basis, a longitudinal evaluation technique for tight oil reservoirs was established. The reservoir was divided into four categories by using this method. The reservoirs with a depth 2306.54 m–2362.07 m were mainly type I and II reservoirs, and the reservoirs with a depth of 2362.07 m–2391.30 m were mainly reservoirs of type II and III. The most effective development was water injection in the upper section and gas injection in the lower section.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference25 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3