The ACE2/Apelin Signaling, MicroRNAs, and Hypertension

Author:

Chen Lai-Jiang123,Xu Ran12,Yu Hui-Min4,Chang Qing12,Zhong Jiu-Chang123

Affiliation:

1. State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China

2. Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai 200025, China

3. Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, China

4. Department of Cardiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China

Abstract

The renin-angiotensin aldosterone system (RAAS) plays a pivotal role in the development of hypertension. Angiotensin converting enzyme 2 (ACE2), which primarily metabolises angiotensin (Ang) II to generate the beneficial heptapeptide Ang-(1-7), serves as a negative regulator of the RAAS. Apelin is a second catalytic substrate for ACE2 and functions as an inotropic and cardiovascular protective peptide. The physiological effects of Apelin are exerted through binding to its receptor APJ, a seven-transmembrane G protein-coupled receptor that shares significant homology with the Ang II type 1 receptor (AT1R). The deregulation of microRNAs, a class of short and small noncoding RNAs, has been shown to involve cardiovascular remodeling and pathogenesis of hypertension via the activation of the Ang II/AT1R pathway. MicroRNAs are linked with modulation of the ACE2/Apelin signaling, which exhibits beneficial effects in the cardiovascular system and hypertension. The ACE2-coupled crosstalk among the RAAS, the Apelin system, and microRNAs provides an important mechanistic insight into hypertension. This paper focuses on what is known about the ACE2/Apelin signaling and its biological roles, paying particular attention to interactions and crosstalk among the ACE2/Apelin signaling, microRNAs, and hypertension, aiming to facilitate the exploitation of new therapeutic medicine to control hypertension.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Internal Medicine

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3