Preparation of Chloro Penta Amine Cobalt(III) Chloride and Study of Its Influence on the Structural and Some Optical Properties of Polyvinyl Acetate

Author:

Abbas Nada K.1,Habeeb Majeed Ali2,Algidsawi Alaa J. Kadham3

Affiliation:

1. Department of Physics, College of Science for Women, Baghdad University, Baghdad, Iraq

2. Department of Physics, College of Education of Pure Sciences, University of Babylon, Babylon, Iraq

3. Department of Soil and Water, College of Agriculture, AL-Qasim Green University, Babylon, Iraq

Abstract

Chloro penta amine cobalt(III) cloride [Co(NH3)5Cl]Cl2was prepared and then characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The obtained results indicated the formation of orthorhombic [Co(NH3)5Cl]Cl2nanoparticles of ≈28.75 nm size. Polymeric films based on polyvinyl acetate (PVAc) doped with chloro penta amine cobalt(III) cloride [Co(NH3)5Cl]Cl2in different weight percent ratios were prepared using the solvent cast technique. The complexation of the additive with the polymer was confirmed by FTIR and SEM studies. The XRD pattern revealed that the amorphousicity of PVAc polymer matrix increased with raising the [Co(NH3)5Cl]Cl2content. Parameters such as extinction coefficient, refractive index, real and imaginary parts, and optical conductivity were studied by using the absorbance and measurements from computerized UV-visible spectrophotometer in the spectral range 190–800 nm. This study showed that the optical properties of PVAc were affected by the doping of [Co(NH3)5Cl]Cl2where the absorption increased by leveling up [Co(NH3)5Cl]Cl2concentration. The nature of electronic transition from valence band to conduction band was determined and the energy band gaps of the composite films samples were estimated by UV-visible spectrum. It was observed that the optical conductivity increased with photon energy and with the increase of [Co(NH3)5Cl]Cl2concentration.

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3